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2 Instituto de Matemática Pura e Aplicada, Estrada Dona Castorina 110, Rio de
Janeiro, CEP 22460-320, Brazil.

Abstract. In this study, a Fourier-based, split-step, Padé (SSP) method for solving
the parabolic wave equation with applications in guided wave propagation in ocean
acoustics is presented. Traditional SSP implementations rely on finite-difference
discretizations of the depth-dependent differential operator. This approach lim-
its accuracy in coarse discretizations as well as computational efficiency in dense
discretizations, since it is does not significantly benefit from parallelization. In con-
trast, our proposed method replaces finite differences with a spectral representa-
tion using the discrete sine transform (DST). This enables an exact treatment of
the vertical operator under homogeneous boundary conditions. For non-constant
sound speed profiles, we use a Neumann series expansion to treat inhomogeneities
as perturbations. Numerical experiments demonstrate the method’s accuracy in
range-independent and range-dependent scenarios, including propagation in deep
ocean with Munk profile and in the presence of a parameterized synoptic eddy.
Compared to finite-difference SSP methods, the Fourier-based approach achieves
higher accuracy with fewer depth discretization points and avoids the resolution
bottleneck associated with sharp field features, making it well-suited for large-
scale, high-frequency wave propagation problems in ocean environments.

AMS subject classifications: 35Q60, 78A45, 42A38, 65T50.
Key words: Split Step Padé Method, Parabolic Wave Equation, Fourier Transform, Discrete
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1 Introduction

The parabolic equation method originates from the work of Leontovich and Fock
[16, 32] where it was proposed as a practical tool for radiowave propagation over the
Earth’s surface. This formulation reduced the computational burden by transforming
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the full-wave elliptic equation into an evolutionary equation that can be efficiently
solved by a one-way marching numerical scheme (with back scattering neglected).
In geophysics, Claerbout applied similar principles to seismic waves simulation [7],
while Tappert later on introduced the parabolic equation in ocean acoustics [30].

Paraxial (narrow-angle) parabolic equations from early papers were not capable of
handling the waves propagating at large grazing angles to the waveguide axis. For
instance, in ocean acoustics this manifests in errors when modelling sound reflection
from the seabottom. This issue was resolved by introducing the so-called wide-angle
parabolic equations [7, 26] (WAPEs) which are currently widely used in optics [17],
radio waves theory [18] and atmospheric and underwater acoustics [1, 10, 20].

Subsequent developments led to the creation of mode parabolic equations describ-
ing the evolution of amplitudes of normal modes in a three-dimensional waveguide.
The adiabatic mode parabolic equation (PE) [9, 22, 25] assumes weak mode coupling,
whereas the coupled mode PEs [1, 14, 23, 31] take mode interactions into account.

The WAPE solution technique known as split-step Padé (SSP) method, indepen-
dently proposed by Collins [10] and Avilov [5] has become an essential step in the de-
velopment of the parabolic equation theory. In this approach, the Padé series is used
to approximate the exponential of the square-root of a differential operator (rather
than the square root itself) in the transverse direction to the waveguide axis. A finite-
difference discretization of this differential operator is commonly used to compute this
Padé approximation numerically. Such discretization imposes certain restrictions on
the meshsize and introduces a truncation error for the derivatives in this direction.

Modern spectral methods overcome this limitation by precisely representing the
vertical differential operator in spectral space, allowing for accurate simulations on
coarser grids. The first such method, the split-step Fourier (SSF) method, introduced
independently by both Hardin [13] and Tappert [29], is suitable for narrow-angle
parabolic equations, that is, for equations obtained from first-order Taylor expansion.
The aim of this study is to combine the high accuracy at high grazing angles of the SSP
method with the exact representation of the differential operator in the SSF method.

Compared to solving the full wave equation numerically (e.g., [21]), the PE ap-
proach requires far less computational effort because direct discretizations must finely
resolve each wavelength. Helmholtz equation solvers based on separation of variables
and finite differences (e.g., [19,27]) also incur a high computational cost due to coupled
eigenvalue problems. In both cases, convergence depends on the spatial discretization
because the depth operator is approximated by finite differences. In constant sound-
speed (isovelocity) environments, however, Fourier transforms apply the operator ex-
actly in spectral space, avoiding this restriction entirely. This improves both accuracy
and also efficiency by making the propagation step inherently parallelizable.

The remainder of this paper is organized as follows: In Section 2, we discuss
the split step Padé (SSP) method in its original form (hereafter abbreviation SSP is
reserved for its traditional implementation based the on finite-difference discretiza-
tion). In Section 3, we introduce the Fourier Transform as a tool to solve the parabolic
wave equation on isovelocity domains and extend the method to also solve equations
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with variable sound speed. Section 4 presents numerical results demonstrating the
method’s accuracy and efficiency. Finally, Section 5 concludes with a discussion of the
findings.

2 The Split-Step Padé Method

The parabolic wave equation is commonly derived from the two-dimensional Helmholtz
equation

∂2
r u + ∂2

zu + k2u = 0 , (2.1)

where k = k(r, z) = ω
c(r,z) is the wavenumber and u is the complex acoustic field. Note

that Eq. (2.1) can describe both a line source in plane geometry and a point source in
the cylindrical geometry [15] (with the spreading factor 1/

√
r removed).

By formally factoring the elliptic differential operator into(
∂r + i

√
∂2

z + k2
) (

∂r − i
√

∂2
z + k2

)
u = 0 (2.2)

one can obtain separate equations for left- and right-propagating waves, respectively.
Neglecting back scattering effects (which is a common approximation for guided wave
propagation) we restrict our attention to the propagation in the positive r direction

∂ru = i
√

∂2
z + k2 u . (2.3)

The so-called pseudo-differential parabolic wave equation can then be formally solved
by integration over the interval [r0, r0 + h], resulting in

u(r + h, z) = exp
(

ih
√

∂2
z + k2

)
u(r, z) = P̂u(r, z) , (2.4)

where the operator P̂ is called propagator. Note that existence, uniqueness and well-
posedness results for Eq. (2.3) were recently established [11] (a rigorous mathematical
definition of the square root operator in the framework of a suitable operator calculus
was also given in this study).

The idea of the split-step Padé (SSP) method [10,22] consists in using a Padé approx-
imation of the order [p/p] for the propagator P̂ as follows

exp
(

ih
√

∂2
z + k2

)
u ≈ eik0h

(
d0 +

p

∑
j=1

dj

1 + bjX̂

)
u = eik0h

(
d0u +

p

∑
j=1

djwj

)
(2.5)

with X̂ =
k2−k2

0+∂2
z

k2
0

= δk2+∂2
z

k2
0

. The weights bj, dj, j = 1, . . . , p are the Padé coefficients
computed according to [6, p. 27–38], while the functions wj are defined by the relation(

1 + bjX̂
)

wj = u(r, z) . (2.6)
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Because of the dependence of δk2 on z, SSP technique usually relies on finite differ-
ence methods (FDMs) to approximate the operator ∂2

z acting on u(r, z). Note that if
the medium wavenumber is constant (i.e., Eq. (2.1) has constant coefficients), then the
differential operator can be represented by multiplication in Fourier domain analyti-
cally (which allows to resolve each Eq. (2.6) efficiently using FFT).

3 The Spectral Split-Step Padé Method

Denoting b̃j := bj/k2
0, we can rewrite Eq. (2.6) on a finite interval z ∈ [0, H] in the form

(
1 + b̃j∂

2
z + b̃jδk2(z)

)
wj(z) = u(r, z) (3.1a)(

L̂j + b̃jδk2(z)
)

wj(z) = u(r, z) . (3.1b)

The part dependent on z, δk2 can then later be regarded as a perturbation. Consider
now the isovelocity case

Ljwj(z) =
(

1 + b̃jδk2(z)
)

wj(z) = v(z) . (3.2)

Discretizing above equation along the z axis with the equidistant grid zn = hn; h =
H
N ; n = 0, . . . , N and applying the discrete Fourier transform (DFT) gives(

1 +
(
ℓ

2iπ
H

)2
)
(w̄j)ℓ = v̄ℓ (3.3)

for all ℓ. The lower index ℓ denotes the ℓth element of the discrete, Fourier transformed
functions w̄j = F

{
wj
}

and v̄ = F {v}. It is now straightforward to invert the operator
analytically by the following formulae

(w̄j)ℓ =

(
1 +

(
ℓ

2iπ
H

)2
)−1

v̄ℓ (3.4a)

wj = L̂−1
j v = F−1


(

1 +
(
ℓ

2iπ
H

)2
)−1

F {v}

 , (3.4b)

whereF−1 {◦} denotes the inverse discrete Fourier transform. Now considering again
the full operator and regarding b̃jδk2(z) as a small perturbation, i.e. Ljwj > δk2wj, we
can rewrite Eq. (3.1b) as

wj(z) =
(

1−
(
−b̃j L̂−1

j δk2(z)
))−1

L̂−1
j u(r, z) . (3.5)
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This solution operator can now be expressed as a Neumann series

wj(z) =
∞

∑
m=0

(
−b̃j L̂−1

j δk2(z)
)m

L̂−1
j u(r, z) (3.6a)

≈
M

∑
m=0

(
−b̃j L̂−1

j δk2(z)
)m

L̂−1
j u(r, z) , (3.6b)

with M ∈N being the cutoff index of the series. Here, the inverse isovelocity operator
L̂−1

j can be applied via Eq. (3.4b) and the operator δk2 can be applied via multiplica-

tion. Note that L̂−1
j and δk2 are noncommutative. As such, the order has to be taken

into account, thus to compute the mth term of the series, a total of m + 1 Fourier- and
inverse Fourier Transforms have to be computed.

The computations described above can be summarized in the form of an algorithm
for solving the parabolic wave equation. Let for this algorithm N ∈ N denote the
number of steps to be taken, bj, dj, j = 1, . . . , p denote the Padé coefficients and M + 1
be the number of series terms taken into account.

Algorithm 3.1 Spectral Split Step Padé (SSSP)

Require: u0 = {u(0, n∆z) : n = 0, . . . , N}; h
compute dj and bj for j = 0, . . . , p− 1 according to [6, p. 27–38]
for n = 1 : N do

for j = 0 : p do
b̃j ← bj

k2
0

wj ← ∑M
m=0(−L̂−1

j b̃jδk2)m L̂−1
j un−1

end for
un ← eihk0 ∑

p
j=0 djwj

end for

3.1 Boundary Conditions

Up to this point, boundary conditions have not been mentioned yet. A major draw-
back of spectral methods in general and this method specifically is that it requires both
the top and the bottom of the domain to satisfy the same boundary condition. Take
the same depth domain as introduced before, z ∈ [0, H] and let the range domain be
r ∈ [0, R]. In the simplest case, as derived above, one assumes periodic boundary
conditions

u(r, 0) = u(r, H) . (3.7)

Those are imposed implicitly by the discrete Fourier transform (DFT). In the case of
more realistic homogeneous Dirichlet boundary conditions

u(r, 0) = u(r, H) = 0 , (3.8)
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the DFT has to be replaced by a discrete sine transform (DST), which satisfies the bound-
ary, as well as for homogeneous Neumann boundary conditions

∂zu(r, 0) = ∂zu(r, H) = 0 (3.9)

a discrete cosine transform can be employed. The following numerical tests employ a
DST to satisfy homogeneous Dirichlet BCs, but due to the nature of the chosen exam-
ple problem could also use a DCT with Neumann BCs for similar results.

Of particular practical interest are transparent or absorbing BCs, as they allow for
the truncation of the computational domain. This allows computing fields on subsets
of unbounded domains numerically. While transparent BCs have not yet been devel-
oped for the presented method, a more generally applicable method, perfectly matched
layers (PML) will be considered in future work. Another option would be to use com-
plex absorbing potentials, which are not numerically optimal, but can be used as a
simple replacement. As the name suggests, this introduces an imaginary component
in the wavenumber, which in turn acts as an absorbing layer around the boundaries.

3.2 Initial Conditions

The initial condition u(0, z) = u0(z) (often called the starter [15]) for parabolic equa-
tions can be generated in a number of ways.

In most cases in acoustics, optics and radio physics, the source of the wave can
be approximated as a point source. To start the propagation, one can take the normal
modes solution of this point source at r = r0, z = zs

u(r0, z) =
√

2π
M

∑
m=1

Ψm(zs)Ψm(z)√
κm

. (3.10)

Those mode functions Ψm as well as the wavenumbers κm are obtained by solving the
Sturm-Liouville problem

∂2
zΨm +

[
k2(z) + κ2]Ψm = 0 (3.11)

on a discrete grid along the z axis with appropriate boundary conditions. In an acous-
tic deep water setting, homogeneous Dirichlet boundary conditions can be used, as
the interaction between the pressure field and the boundaries is minimal.

A less expensive numerical starter is the self-starter developed by Collins [8], which,
while not used in this study, can in principle be applied with the Spectral Split Step
Padé (SSSP) approach with only minor modifications.

Analytical starters have also been developed to accurately match the far field be-
havior of a point source. Most notably, starters in the form of a Gaussian function are
used. For wide angle PEs specifically, Greene’s source [12]

u(r0, z) =
√

k0
[
1.4467− 0.4201k2

0(z− zs)
2] e−

k2(z−zs)
3.0512 , (3.12)
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has been shown to have good spectral properties and is much simpler to compute than
a modal starter.

A ray-based starter has been developed recently [24] and will be considered upon
further development of SSSP.

4 Numerical Results

Since the convergence rate of the series (3.6) depends on the relative magnitude of
the wave-number perturbation δk2, the first scenario focuses on the propagation of a
time-harmonic acoustic signal in a range-independent deep-water waveguide (with a
SOFAR channel) with perfectly reflecting surface and bottom. The second numerical
experiment demonstrates the range-dependent capabilities of the methods by simu-
lating sound propagation through a parametrized synoptic eddy. For the final ex-
periment, we compare the performance of the classical SSP method with the newly
developed SSSP method for very coarse depth discretizations. In this case, the error
from approximating the differential operator by finite differences in the standard SSP
is so large that the SSSP outperforms the classical method. The software used can be
found at [33].

4.1 Range-Independent Propagation

In the first numerical experiment, we study the propagation of acoustic waves in a
range-independent, deep-water environment using the Munk sound speed profile.
The objective of this subsection is to determine the number of terms in the Neumann
series necessary to accurately reproduce the field using the SSSP. The Munk profile

cMunk(z) = 1500
(
1 + 0.00737(η + e−η − 1)

)
ms−1; η = 2

z− 1300 m
1300 m

(4.1)

is a widely used model for the dependence of sound speed on depth in the deep sea.
We set the total depth to 4 km and use a normal mode-based starter [15] representing
a point source deployed at a depth of zs = 1100 m, so that the acoustic field at r = 0
is computed as a linear combination of normal mode eigenfunctions. We compare our
solution to the solution obtained by the classical finite-difference SSP method (i.e., SSP
based on a finite-difference approximation of derivatives with respect to depth z).

Both the numerical experiments and the reference solution depicted in Figure 1
use 8001 equidistant points in depth and a step size of h = 100 m. As can be seen in
the comparison, including only three terms of the series (M = 2) yields results that are
already qualitatively comparable to the normal modes reference solution. However,
a difference between the SSSP solution with M = 2 and the analytical solution is still
noticeable, especially at large depths where the perturbation δk2 becomes large. When
only the first two terms of the series are included, as in Figure 1 b), the computed
field exhibits an unphysical blowup due to the first term over-correcting in the posi-
tive direction. This has been adjusted by renormalizing the field to properly display
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Figure 1: Acoustic pressure (in dB re 1 m) computed at 100 Hz using the [4/4] Padé
approximation and a step size of 100 m for a deep-water sound channel with the Munk
profile (4.1). The subplots (a-c) illustrate the convergence of the Neumann Series (3.6).
a) corresponds to M = 0, equivalent to the isovelocity case. b) shows the field for
M = 1, c) for M = 2. d) shows a reference field, generated by the method of normal
modes while a slice (the acoustic pressure at a constant depth z = 1300 m) is displayed
in Figure 2.

its shape. Figure 2 displays a slice of the same field at a constant depth z = 1300 m
to show the convergence of this method. The order 1 field displayed here is normal-
ized once again. One can also see the alternating sign of the Neumann series here,
as the method converges in an alternating fashion from below and above towards the
analytical solution.

4.2 Range Dependent Propagation

To demonstrate the method’s range-dependent capabilities, we introduce a perturba-
tion of the sound speed profile in the form of a synoptic eddy with an exaggerated
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Figure 2: Acoustic field (in dB re 1 m) propagated through a range independent Munk
profile using different correctors of order M at the depth z = 1300 m. The reference is
once again produced by the method of normal modes. The stepsize used is h = 100 m,
the discretization constant in depth is ∆z = 0.5 m.

magnitude. The eddy is parameterized using the formula

cEddy(r, z) = −cm exp
(
− (x− x0)2

r2
x

)
exp

(
− (y− y0)2

r2
y

)
(4.2)

×
(

z− z0

rz

)
exp

(
−β(z− z0)2

r2
z

)
, (4.3)

obtained by fitting the CTD measurements of a real eddy in the Sea of Japan [28].
The parameters used to yield a noticeable perturbation are given in Table 1. Combin-
ing (4.1) and (4.3), we express the total sound speed distribution by

c(r, z) = cMunk(z) + cEddy(r, z) . (4.4)

In ocean acoustics, warm synoptic eddies defocus the field. While this effect is measur-
able in a natural eddy, it is not as noticeable in two-dimensional image plots. For this
reason, the perturbation used in this work is exaggerated by a factor of slightly more
than ten. The acoustic field generated by a point source located at z = zs = 1100 m is
computed using the classical finite-difference SSP method and the SSSP method pro-
posed here. The two solutions are then compared to each other and to the acoustic
field in the unperturbed sound channel (i.e., without the eddy).

To compute higher-quality reference and SSSP solutions, a higher order ([6, 6])
Padé approximation is used. The depth dimension is discretized into 2048 equidis-
tant points, and the step size in the range is h = 100 m.
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β rx ry rz x0 y0 z0 cm
1.7125 32 km 18 km 250 m 50 km 0 m 1100 m 40 m s−1

Table 1: Eddy parameters based on the parametrization given in [28].
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Figure 3: Acoustic pressure (in dB re 1 m) due to a point source in the problem of
sound propagation through a synoptic eddy. In all SSP-simulations, a [6, 6] Padé ap-
proximation, a step size of h = 100 m and 2048 equidistant discretization points in
depth are used. In a) the field without the eddy is displayed as a reference, computed
using SSP. The field perturbed by a synoptic eddy computed using SSP is shown in b).
The eddy center is indicated by a black “X”, and its sphere of influence, measured by
its variance, is indicated by the horizontal and vertical blue lines. c) shows the acoustic
field propagated by SSSP through the eddy. d) shows the acoustic field at z = 900m,
as the field enters the perturbation in sound speed caused by the eddy.

It is clear that the SSSP method provides an approximation of the acoustic field that
is just as accurate as the one obtained by the classical SSP method. A slight difference
between the two methods appears in the sliced field at z = 900 m, but the maximum
occurs at the minimum of the acoustic pressure, where accuracy is less important.
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4.3 Coarse Grid Propagation

To demonstrate numerically that the SSSP algorithm employs an analytical represen-
tation of the derivative operator, we propagate coarse-grid modal starters using both
SSSP and SSP. Typically, the SSP algorithm begins to exhibit unphysical behavior as
soon as the starter cannot be smoothly represented on the discrete grid. While this
is not usually a problem for most starters, which are typically sufficiently smooth,
Greene’s starter (3.12) features a sharp, localized peak about the size of a single wave-
length. Thus, it requires a large number of points, typically more than 10, per wave-
length. For spectral methods, however, this lower limit is much less strict. Aliasing
effects, the main source of error in discrete transform-based methods, only appear
when the highest-frequency oscillations cannot be represented. This occurs at approx-
imately two points per wavelength.

To demonstrate the magnitude of this effect, we compare the propagation of the
modal starter for the Munk profile with 128, 256, and 512 discretization points be-
tween SSSP and SSP. This corresponds to discretization constants of h = 31.25 m and
h = 15.625 m, respectively. With this level of discretization, Greene’s starter can no
longer be properly represented, and even with the smooth modal starter, FDM ex-
hibits significant errors. This discretization is not fine enough to resolve the highest-
frequency features of the field; however, the SSSP method preserves the overall shape
of the solution. Figure 4 shows that SSSP requires only 128 points to converge to the
solution for the chosen example. SSP, on the other hand, has not quite converged, even
when using 512 points – four times as many as SSSP requires.

5 Conclusion and Outlook

In this work, we presented a spectral split-step Padé (SSSP) method for solving the
one-way Helmholtz equation in wave propagation modeling problems. This method
employs an exact representation of the depth-dependent differential operator using
Fourier transforms. This novel approach eliminates the need for a dense grid in finite
difference discretization because no discretization error is introduced by approximat-
ing the differential operators. The SSSP method accommodates standard boundary
conditions by employing discrete trigonometric transforms, such as the discrete sine
transform. As with all Fourier transform-based methods, applying the method to ar-
tificially truncated computational domains using perfectly matched layers (PMLs) or
absorbing boundary conditions, as well as to domains with mixed boundary condi-
tions, is currently not straightforward.

For future work, we will consider combining the pseudospectral approach of An-
toine and coauthors [2–4] with our Fourier method and the use of PML to accomplish
the truncation of the computational domain.
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Figure 4: Propagation of a modal starter through a Munk profile using different dis-
cretizations in z. Displayed is the acoustic pressure (in dB re 1 m). a) uses SSP with 128
points, b) uses SSSP with again 128 points. c) uses 256 points and SSP, while d) uses
SSSP. e) uses 512 points and SSP, f) SSSP. A reference solution computed using normal
modes is given in Figure 1.
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