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Abstract

We present a novel approach for parameter calibration of the Heston model for
pricing an Asian put option, namely space mapping. Since few parameters of the
Heston model can be directly extracted from real market data, calibration to real
market data is implicit and therefore a challenging task. In addition, some of the
parameters in the model are non-linear, which makes it difficult to find the global
minimum of the optimization problem within the calibration. Our approach is based
on the idea of space mapping, exploiting the residuum of a coarse surrogate model
that allows optimization and a fine model that needs to be calibrated. In our case,
the pricing of an Asian option using the Heston model SDE is the fine model, and
the surrogate is chosen to be the Heston model PDE pricing a European option. We
formally derive a gradient descent algorithm for the PDE constrained calibration
model using well-known techniques from optimization with PDEs. Our main goal
is to provide evidence that the space mapping approach can be useful in financial
calibration tasks. Numerical results underline the feasibility of our approach.

1 Introduction
Financial models aim to approximate the real market behavior of various underlyings.
Since most model parameters are implicit in the real market data, calibrating the model
parameters to fit the real market data is challenging [7, 13, 19, 21, 22, 25]. In this article,
we consider the well-known Heston model [11], a two-dimensional stochastic differential
equation (SDE) that allows to simulate the behavior of stock prices. In particular, for a
given variance of the option we calibrate four implicit parameters – the volatility of the
variance, the mean inversion rate, the long-term mean and the correlation factor of the
Brownian motions in the model equations for the asset and the variance – to the market
data. Our goal is to provide a proof-of-concept, so we choose the simplest model with
constant coefficients. However, we are aware that the Heston model can be extended in
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various ways, e.g. by considering time-dependent parameters [22] or by including additional
processes, which leads to an increase in the difficulty of the calibration process [25].

Various calibration techniques for the Heston model are available in the literature.
Indeed, in the setting of constant parameters and for very specific use cases, there are
approaches based on the closed-form valuation formula of the Heston model [22, 7]. These
are fast and provide information about the global minimum. For more general cases, the
stochastic nature of the Heston model allows for Monte Carlo optimization methods [25],
which can also be used to calibrate the stock price and variance. The Monte Carlo theory
is well established, but the approaches are computationally expensive and do not provide
information about global or local minima. Recently, calibration approaches using neural
networks, deep learning strategies as well as parallel GPU implementation of the Heston
model have been proposed [13, 19, 20, 18, 9]. The networks must be trained individually
for each model, and training requires appropriate data. Again, there is no information
about global or local minima. An advantage is that once the neural networks are trained,
they can be evaluated quickly.

Our contribution to this line of research is a calibration algorithm for the Heston
model that is independent of a specific characteristic function and easily extendable to
time-dependent parameters. The core of the algorithm is based on the space mapping
[2], an iterative procedure that minimizes the residuum of a fine and a coarse model. In
fact, to calibrate the parameters of the fine model, the coarse model is optimized and the
fine model is only evaluated. To demonstrate the proposed approach, we calibrate the
Heston SDE model for pricing Asian put options (fine model) to real market data. The
calibration uses only one given market price. In our setting, the coarse model is chosen
because it is the computationally less expensive Heston model for pricing the European
put option, which is known to be a good approximation for the Asian option in the case
of short maturities. This is because the European option is a limiting case for the Asian
option. In more detail, while we aim to calibrate the parameters of the SDE for the Asian
put option, we will optimize the deterministic PDE model of the European option, which
can be solved using techniques from optimization with PDE [12, 27]. In each iteration of
the calibration process, we will evaluate the SDE to compute the residuum of the two
models. To our knowledge, there is only one paper dealing with the calibration of Asian
options under the Heston model, where Khalife et al. [15] calibrate the Heston model
using artificial intelligence and the approximation is done via the European option as well.

The proposed calibration is based on aggressive space mapping (ASM) [8]. To iteratively
update the parameters of the fine model, a PDE-constrained optimization problem is
considered at the level of the coarse model. We measure the difference between the fair price
given by the numerical solution of our model and the reference data, the subsequent market
data, in the cost functional. The PDE-constrained optimization problem is solved using a
gradient descent method. For this purpose, we formally derive an adjoint-based gradient
descent algorithm for the Heston PDE model. Note that gradient descent algorithms have
previously been used implicitly in the context of neural network approximations for the
Heston model [20].

As mentioned above, our main goal is to provide a proof-of-concept that the space
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mapping approach can be useful for calibration tasks in financial research. This claim is
supported by the numerical results. However, we are aware that there is much room for
improvement, for example an extension to time-dependent parameters, see [5] for details
on the PDE-constrained optimization problem.

The article has the following structure. In Section 2, we present the mathematical
formulation of the Heston SDE model and its log-transformed form for pricing an Asian
put option. We also discuss the PDE formulation of the Heston model for pricing a
European put option. In Section 3, we then introduce the corresponding optimization
problems and present details of the space mapping approach. This includes the formal
derivation of the adjoint of the log-transformed Heston model as well as the identification
of the gradient which is used in the descent algorithm. We then discretize the SDE model
and the PDE calibration method in Section 4. Numerical results to illustrate the feasibility
of space mapping in finance are presented in Section 5. Finally, in Section 6 the paper
ends with a conclusion and an outlook.

2 The Heston SDE model and its PDE approximation
The Heston model was proposed by Heston in 1993 [11] and describes the dynamics
of the underlying asset and its variance by a two-dimensional SDE. It is an extension
of the well-known Black-Scholes model [3]. Let S ∈ R+ denote the asset, r ∈ R>0 the
risk-free interest rate, σS ∈ R>0 the volatility and W S

t the Brownian motion. Then the
Black-Scholes model describes the dynamics of S as a geometric Brownian motion process
given by

dSt = rSt dt+ σSSt dW
S
t , t ∈ [0, T ], S0 > 0, (1)

where T is the maturity.
Heston introduced a second stochastic process to model more complex volatility

behavior. Let ν ∈ R+ denote the variance, set σS =
√
ν, and assuming that the volatility

follows an Ornstein-Uhlenbeck process, he includes a Cox-Ingersoll (Ross) process for the
variance. This leads to Heston’s SDE model under the risk-neutral measure given bydSt = (r − q)St dt+ √

νtSt dW
S
t , S0 > 0,

dνt = κν(µν − νt) dt+ σν
√
νt dW

ν
t , ν0 > 0,

, (2)

where q ∈ R>0 is the continuous dividend rate, κν ∈ R>0 is the mean reversion rate,
µν ∈ R>0 is the long term mean, and σν ∈ R>0 is the volatility of the variance. The
Brownian motions W S

t and W ν
t are correlated by the constant ρ ∈ [−1, 1], cf. [11]. To

ensure that the square root of (2) is positive, the Feller condition 2κνµν ≥ σ2
ν must be

satisfied. Otherwise, computational problems arise due to a complex variance. The Heston
SDE representation is used to price Asian put options with the payoff function

ϕS(S, T ) = max
(
K − AS(0, T )

)
, (3)

where K is the predetermined strike price and

AS(0, T ) = 1
T

∫ T

0
St dt. (4)
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2.1 The fine model
To zoom into the particularly interesting price range near K, we use the variable transfor-
mation x = log(S) for the asset. We get the log-transformed Heston SDE

dxt = (r − q − 1
2νt) dt+ √

νt dW
S
t , S0 > 0,

dνt = κν(µν − νt) dt+ σν
√
νt dW

ν
t , ν0 > 0,

dW x
t dW

ν
t = ρ dt

. (5)

on the semi-unbounded domain x ∈ R, ν ≥ 0, 0 ≤ t ≤ T with the transformed payoff
function

ϕ(x, T ) = max
(
K − A(0, T )

)
= max

(
K − 1

T

∫ T

0
exp(xt) dt

)
. (6)

The payoff condition holds at the maturity and we are interested in the fair price Vf (x, t)
today at t = 0 given by

Vf (x, 0) = exp(−rT )E
(
ϕ(x, T )

)
(7)

using the discounted expectation value. This model will be used as the fine model in the
space mapping approach discussed in Section 3.

2.2 The coarse model
As we will discuss in more detail below, the theory of space mapping requires that the
coarse model be a reasonable approximation of the fine model that can be easily optimized.
Since the European plain vanilla option is a limiting case for the Asian put option, we
choose it as the coarse model. Furthermore, we use the PDE formulation of the Heston
model for the European plain vanilla option because we can optimize it using methods
from optimization with PDE constraints.

Note that the payoff condition (6) holds at maturity and thus yields a terminal
condition. To obtain an initial value problem, we reverse the time τ = T − t. Then,
the Heston PDE under a risk-neutral measure is derived using Kolmogorov’s backward
equation. For the fair price of an option V (x, ν, τ) it reads

Vτ = ν

2Vxx + 1
2σ

2
ννVνν + (r − q − ν

2)Vx + κν(µν − ν)Vν + σννρVxν − rV, (8)

and is supplemented with the initial condition

V (x, ν, τ) = max
(
K − exp(x), 0

)
, (9)

and appropriate boundary conditions. We choose to use the boundary conditions proposed
by Heston and apply the log-transformation to obtain

V (x, ν, τ) ∼ K exp(−rτ), for x → −∞, (10)
V (x, ν, τ) = 0, for x → ∞, (11)
V (x, ν, τ) ∼ K exp(−rτ), for ν → ∞. (12)
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Note that the parabolic PDE (8) degenerates to a first-order hyperbolic PDE at ν = 0,
therefore we need to consider the Fichera theory [4, 17] to assess whether it is necessary
to provide an analytic boundary condition at ν = 0 or not. From the Fichera condition at
ν = 0 given by

b(ν) = κν(µν − ν) − 1
2σ

2
ν (13)

we get a case dependency. At ν = 0 we get an outflow boundary if limν→0+ b(ν) ≥ 0,
otherwise we get an inflow boundary. The condition for an outflow boundary (13) is
equivalent to the Feller condition 2κνµν ≥ σ2

ν , which motivates us to assume in the
following that the Feller condition holds, so that we do not have to supply an analytical
boundary condition at ν = 0. At this point we want to mention that we need a numerical
boundary condition to complete the scheme, which will be discussed later in Section 3.1.

3 The Space Mapping Approach
Below we summarize the main ideas of the space mapping approach. For more details we
recommend [2, 8, 26, 23]. The purpose of space mapping is to optimize (or calibrate) an
accurate and computationally expensive model (fine) that cannot be optimized using a
surrogate model (coarse) for which efficient optimization algorithms are available.

In our case, the accurate model is the Heston SDE for Asian option pricing, and the
coarse model is the Heston PDE for European option pricing, as discussed above. Both
models return a single price for a predefined asset S̃ and a variance ν̃. The predefined
asset is part of the contract, but ν̃ must be determined implicitly from the market data or,
as in our case, predefined by a guess. Together with the other unknown model parameters,
we want to calibrate ξ = (σν , ρ, κν , µν). Note that we can take advantage of the fact that
the parameters we want to calibrate are present in both models.

Although we expect the optimal values of the parameters to be different for the two
models, the space mapping technique helps us to calibrate the parameters of the fine
model while only optimizing the coarse model. In the following, we distinguish between
ξf , the parameter vector for the fine model, and ξc, the parameter vector for the coarse
model. Similarly, we denote the option price of the fine model by Vf and the option price
of the coarse model by Vc.

Since we are using real market data Vdata as ground truth for the calibration, we define
the cost functional as follows

J(V ;Vdata) = 1
2

∫ T

0
∥V − Vdata∥2 dτ. (14)

In the following, we want to approximate the solution of the fine calibration problem

min
ξf∈Xf

J(Vf ;Vdata) subject to Vf (x, 0) = exp(−rT )E(ϕ(x, T )), (15)

where x is the solution of the log-transformed Heston SDE (5). Note that we do not solve
the fine optimization problem, but only evaluate the cost functional for given parameter
sets ξf during the space mapping algorithm.
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The optimization problem, which aims to calibrate the coarse model for given real
market data, is given by

min
ξc∈XC

J(Vc;Vdata) subject to Vc solves (8). (16)

In the following we assume that both problems (15) and (16) admit a unique solution
with a unique minimizer.

The solution of the coarse calibration problem will be our initial guess for the optimal
parameter set of the fine model. However, in the space mapping approach we want to
iteratively improve the parameter values of the fine model and we exploit the approximation
properties of the coarse model. Let’s assume that there exists a so-called space mapping
function s : Xf → Xc, ξf 7→ s(ξf), which satisfies

s(ξf) := argminξc∈Xc r
(
Vc(ξc), Vf (ξf)

)
, (17)

for some misalignment function r : Y × Y → R.
Assuming that the coarse model is a good approximation of the fine model, and

choosing J as the misalignment function, we expect the following condition to be satisfied

s(ξ∗
f ) = argminξc∈Xc J

(
Vc(ξc);Vf (ξ∗

f )
)

≈ argminξc∈Xc J
(
Vc(ξc);Vc(ξ∗

c )
)

≈ argminξc∈Xc J
(
Vc(ξc);Vdata

)
= ξ∗

c .

The underlying assumption is, that the optimal states Vf and Vc are both good approxi-
mations of the ground truth Vdata, each for the respective model.

The strategy of the space mapping algorithm is to solve

s(ξ∗
f ) − ξ∗

c = 0.

Note that we will not approximate the entire function s, but only evaluate it along the
iterations. Approximating s entirely is a much harder and probably ill-posed task.

For the numerical results we use a simplified version of the Aggressive Space Mapping
(ASM) algorithm [23], in fact by the linearity of the state problems (5) and (8) we can
approximate the Jacobian of the space mapping function by the identity [1] and thus
obtain the Algorithm 1.
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Algorithm 1: The simplified Aggressive Space Mapping (ASM) algorithm
Result: optimized ξf
ξ0

f = ξ∗
c = argminξc∈Xc ∥c(ξc) − V ∥;

for k = 0, 1, . . . do
1) evaluate space mapping function s(ξk

f ) by ;
(a) evaluate fine model (7) to obtain Vf using ξk

f
(b) Perform a coarse model optimization
s(ξk

f ) = argminξc∈Xc J
(
Vc(ξc);Vf (ξf)

)
2) Compute hk = −(s(ξk

f ) − ξ∗
c )) for update hk

4) Update control ξk+1
f = ξk

f + hk using the projected Armijo rule to restrict
ξk+1

f to the boundary
while ∥s(ξk

f ) − ξ∗
c ∥ > tolerance;

end

3.1 Optimal Control of the Coarse Model
In the following, we formally derive the first-order optimality system of the coarse calibra-
tion problem that we solve in (b). For notational convenience, we use J

(
Vc(ξc);Vdata)

)
in

the derivation. Our formal derivation is based on a Lagrangian. Specifically, we formally
derive a gradient-based algorithm using a Lagrangian approach to solve

ξ∗
c := argminξc∈Xc J(Vc, Vdata) subject to (8) (18)

for a given data set Vdata. We denote the Lagrange multipliers by ψ = (φ, φa, φb, φc, φd),
set Ω = (0, νmax) × (xmin, xmax) and partition the boundary ∂Ω into

Γa = ∂Ω ∩ {x = −∞}, Γb = ∂Ω ∩ {x = ∞},
Γc = ∂Ω ∩ {ν = 0}, Γd = ∂Ω ∩ {ν = ∞}.

From the log-transformed Heston PDE (8), we define

A = 1
2ν
(
σ2

ν σνρ
σνρ 1

)
, b =

(
κν(µν − ν) − 1

2σ
2
ν

r − q − ν
2 − 1

2σνρ

)
and rewrite it to its divergent form

Vτ − ∇ · A∇V − b · ∇V + rV = 0.
The constraint operator e in the Lagrangian is implicitly defined by

⟨e(V, ξ), ψ⟩ =
∫ T

0

∫
Ω̃
V
[
−φτ − ∇ · A⊤∇φ+ b · ∇φ+ (r + ∇ · b)φ

]
dz

+
∫

∂Ω
[(A⊤∇φ) · n⃗− (b · n⃗)φ]V ds−

∫
∂Ω

(A∇V ) · n⃗φ dsdτ

+
∫ T

0

∫
Γa

[
V − exp(−rτ)

]
φa dsdτ +

∫ T

0

∫
Γb

V φb dsdτ

+
∫ T

0

∫
Γd

[
V − exp(−rτ)

]
φd dsdτ,

(19)
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where Ω̃ = Ω ∩ Γc, since no boundary condition is required at Γc.
Following the approach of the authors [5], we obtain the adjoint equation

φτ + 1
2νσ

2
νφνν + νσνρφxν + 1

2νφxx + (σ2
ν − κν(µν − ν))φν

+ (q − r + ν

2 + σνρ)φx + (κν − r)φ = −(V − Vdata) on Ω (20)

with terminal condition φ(T ) = 0 and φ = 0 on the boundaries Γa, Γb and Γd and the
outflow boundary at ν = 0. For a more detailed derivation of the adjoint formulation, see
[5].

We compute the optimality condition by setting dξL(V, ξ, ψ) = 0. Since the boundaries
Γa, Γb and Γd are zero, we focus on Ω̃. In the following, the derivatives with respect to
the different parameters are given separately

dσν ⟨e(V, ξ), ψ⟩ =
∫ T

0

∫
Ω̃
V
[
−σννφνν − 2σνφν − ρφx − ρνφxν

]
dz dτ,

dρ⟨e(V, ξ), ψ⟩ =
∫ T

0

∫
Ω̃
V
[
−σνφx − σννφxν

]
dz dτ,

dκν ⟨e(V, ξ), ψ⟩ =
∫ T

0

∫
Ω̃
V
[
(µν − ν)φν − φ

]
dz dτ,

dµν ⟨e(V, ξ), ψ⟩ =
∫ T

0

∫
Ω̃
κνV φν dz dτ.

Note that dξL(V, ξ, ψ)[hξ] = 0 must hold for arbitrary directions hξ. Therefore, we can
read off the gradient from the above expressions. We solve the state equation for the
Heston model with a constant control variable ξ (8) for a given initial parameter set ξ0,
With the state solution at hand, we can compute the corresponding adjoint equation (20)
backwards in time. The state and adjoint solutions allow us to compute the gradient for
the descent step.

We ensure that κν , µν , σν , and ρ are within their parameter bounds, and that the
Feller condition is satisfied by using the projected Armijo rule [27]. In the projected
Armijo rule, we choose the maximum σk ∈ {1, 1/2, 1/4, . . .} for which

f
(
P(ξk − σk∇f(ξk))

)
− f(ξk) ≤ − γ

σk

∥P(ξk − σk∇f(ξk)) − ξk∥2
2.

Here, γ ∈ (0, 1) is a numeric constant, we will use the default choice with γ = 10−4.

4 Numerical Scheme
Since this is a proof-of-concept, simple and well-known spatial and temporal discretization
methods are used to illustrate our approach for discretizing both the SDE and the PDE.



4.1 The Fine Model: Heston SDE 9

4.1 The Fine Model: Heston SDE
For the fine model, we consider a Monte Carlo simulation with variance reduction. We
consider the log-transformed SDE

dxt = (r − q − 1
2νt) dt+ √

νt dW
S
t , S0 > 0,

dνt = κν(µν − νt) dt+ σν
√
νt dW

ν
t , ν0 > 0,

dW x
t dW

ν
t = ρ dt

. (21)

and use the well-known Euler-Maruyama scheme to discretize the SDE. Therefore we
discretize the time uniformly tk = k∆t, where ∆t = T/Nt and k = 0, . . . , Nt. Given two
independent normal distributed random variables for each time step ω1,k and ω2,k, we
generate

ωx,k = ω1,k,

ων,k = ρωx,k +
√

1 − ρ2ω2,k,
(22)

and obtain the discretized schemexk+1 = xk + (r − q − 1
2νt) ∆t + √

νt

√
∆tωx,k

νt+1 = νt + κν(µν − νt) ∆t + σν
√
νt

√
∆tων,k

. (23)

To reduce the variance, we use antithetic variables [10] to obtain the so-called antithetic
path x−. Since we use a uniform spacing for the time discretization, the discrete integral
A(0, T ) of the payoff function is approximated by

A(0, T ) = 1
T

∫ T

0
exp(xt)dt ≈ 1

T

T

Nt

Nt∑
k=1

exp(xk) = 1
Nt

Nt∑
k=1

exp(xk) = mean(x). (24)

If Np is the number of paths generated for the Heston model, we get the payoff for a path
p

ϕp(x, x−, T ) = 1
2

(
max

(
K − mean(x), 0

)
+ max

((
K − mean(x−), 0

))
(25)

and the fair price of the option is given by

exp (−rT ) 1
Np

Np∑
i=1

ϕpi
(x, x−, T ). (26)

4.2 The Coarse Model: Heston PDE
Before discretizing the Heston PDE, we perform a domain truncation and introduce a
closure boundary condition at ν = 0 for the Heston and its adjoint formulation. Since
we assume that the Feller condition holds, according to Fichera theory we have a pure
outflow boundary at ν = 0 and no need for an analytical boundary condition, neither for
the Heston model nor for its adjoint formulation. However, we do need a closure condition
at this boundary for the discretized PDE. As discussed in [6, 17], we follow Heston’s



4.2 The Coarse Model: Heston PDE 10

approach and use the reduced hyperbolic formulation of the Heston PDE and its adjoint.
At Γc, we obtain for the log-transformed normalized PDE and similarly for the adjoint
formulation

φτ + (σ2
ν − κνµν)φν + (q − r + σνρ)φx + (κν − r)φ = −(V − Vdata). (27)

We obtain a rectangular grid by truncating the domain and introducing grid points. We
consider uniform meshes in each direction and get xi = xmin + i∆x for i = 0, . . . , Nx with
∆x = (xmax − xmin)/Nx and νj = j∆ν for j = 0, . . . , Nν with ∆ν = νmax/Nν for the spatial
direction, and τk = k∆τ for k = 0, . . . , Nτ with ∆τ = T/Nτ for the time direction.

For the time discretization we use the Hundsdorfer-Verwer scheme [14], a well-known
alternating direction implicit (ADI) method that is able to handle mixed derivative terms.
Within the Hundsdorfer-Verwer scheme, θ is introduced as a classification measure similar
to the θ method and is of second order for any choice of θ. Since the log-transformed
Heston PDE and its adjoint formulation are second-order PDEs, they are discretized
similarly. Therefore, we introduce a general second-order PDE formulation

uτ + a11uνν + 2a12uxν + a22uxx + b1uν + b2ux + cu = 0. (28)
As a first step, we split the PDE operator into three operators

F(τ) = F0(τ) + F1(τ) + F2(τ). (29)
Each operator deals with a spatial direction, F0 includes the mixed derivative terms,
F1 includes the derivatives in x-direction, and similarly F2 includes the derivatives with
respect to ν. Since the term cu is independent, it is split in half and added to both F1
and F2. We get the splitting

F0(τ) = 2a12Dxν ,

F1(τ) = b2Dx + a22Dxx − 1
2cI,

F2(τ) = b1Dν + a11Dνν − 1
2cI,

where Dx describes the discretization matrix of the first derivative w.r.t. x and correspond-
ingly Dxx of the second derivative w.r.t. x, Dν and Dνν of the first and second derivatives
w.r.t. ν, I denotes the identity matrix. We use central finite difference stencils to derive
the corresponding matrices.

Let ui,j
k ≈ u(xi, νj, τk) and simplify uk ≈ u(x, ν, τk). In each time step, we have to

solve the following system of equations

Y0 = uk + ∆τF(τk)uk,

Y1 = Y0 + θ∆τ
(
F1(τk+1)Y1 − F1(τk)uk

)
,

Y2 = Yx + θ∆τ
(
F2(τk+1, Y2) − F2(τk)uk

)
,

Ỹ0 = Y0 + 1
2∆τ

(
F(τk+1)Y2 − F(τk)uk

)
,

Ỹ1 = Ỹ0 + θ∆τ
(
F1(τk+1)Ỹ1 − F1(τk)uk

)
,

Ỹ2 = Ỹx + θ∆τ
(
F2(τk+1)Ỹ2 − F2(τk)uk

)
,

uk+1 = Ỹ2,

(30)
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Guess κν µν σν ρ
1 3.0 0.3 0.1 -0.2
2 5.0 0.6 0.2 -0.3
3 4.5 0.8 0.5 -0.15
4 2.0 0.4 0.45 -0.2
5 4.0 0.5 0.15 -0.35
6 3.5 0.35 0.5 -0.5

Table 1: Different initial guess sets for the initial coarse model calibration.

where we choose θ = 3/4 and implement uk as a matrix [24]. The discrete boundary
conditions in x-direction for a sufficiently small xmin and a sufficiently large xmax are set
to V (xmin, ν, τ) = exp(−rτ) and similarly V (xmax, ν, τ) = 0. For the variance at ν = νmin
and ν = νmax we use the ghost cell approach. Within this approach, additional grid points
are computed at ν0 = νmin − ∆ν and νNν+2 = νmax + ∆ν via zero-order extrapolation. For
a detailed discussion, see [6, 17]. The integrals appearing in the gradient are computed by
the trapezoidal rule.

5 Numerical Results
From the put options on the Nikkei 300 index on Dec. 31, 2012, we get one S0 and
five different sets, each with the following parameters r, q, and K. Thus, we specify
M1,M2,M3,M4 and M5 for the different market data sets. Since the maturity must be
small to use the European option price as a proxy for the Asian option price, we focus on
T = 0.25. For the spatial discretization we set

xmax = log(1.2 ∗ S0), Nx = 120, ∆x = xmax

Nx

and xmin = ∆x,

νmax = 1, Nν = 100, ∆x = νmax

Nν

and νmin = ∆ν .
(31)

and select ν0 = 0.05. As a result of this discretization, the strike price (and thus the kink
in the payoff function) is approximated at a grid point. Therefore, we smooth the initial
condition using the operator from Kreiss et al. [16] The time discretization uses

τmax = T, Nτ = 170, ∆τ = T

Nτ

and τmin = 0. (32)

We consider six different initial guesses for the algorithm, see Table 1; each parameter set
satisfies the Feller condition.

First, we focus on the gradient descent algorithm. For the algorithm, we set the
iteration maximum to 51 and the terminal condition Jc(V, c(ξc)) < 10−3. Since we are
using a gradient-based algorithm, we can only expect to converge to a local minimum, to
evaluate the descent over the iterations we use the relative reduction of the cost functional

r(ξ0
c ) = 100 ·

(
1 − J(V (ξopt);Vdata)

J(V (ξ0
c );Vdata)

)
, (33)
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M \Guess 1 2 3 4 5 6
1 99.97 99.91 99.98 99.66 99.99 99.95
2 99.97 99.92 99.98 99.81 99.98 99.96
3 99.97 99.51 99.69 99.50 99.98 99.93
4 99.97 99.75 99.97 99.72 99.96 99.87
5 99.96 99.92 99.98 99.92 96.15 99.49

Table 2: Cost functional reduction for the initial calibration of the coarse model.

M \Guess 1 2 3 4 5 6
1 0.888 0.861 0.578 0.808 0.289 1.058
2 0.928 0.845 0.680 0.603 0.401 0.892
3 0.933 4.638 9.914 0.516 0.461 1.702
4 0.906 1.639 1.248 0.678 0.707 3.542
5 1.031 0.928 0.988 0.689 56.160 17.323

Table 3: Cost functional value for the optimal calibration of the coarse model, scaled by 103.

where ξ0
c is the initial guess from Table 1.

Table 2 shows the cost functional reduction of the last and/or optimal cost function
value. The bold values indicate instances where the maximum number of iterations was
reached. We observe that the gradient descent algorithm calibrates the parameter ξc
almost perfectly, even if we can’t guarantee to find the global minimum. In Table 3,
which shows the optimal value of the cost functional, we observe that for most of the test
cases we reach the terminal condition of the gradient algorithm. The cases where the
condition is not reached at the iteration maximum are shown in bold. The cases with
the highest cost functional values correspond to the smallest cost function reduction. To
illustrate the cost functional reduction per iteration, Figure 1 shows the value for the first
10 iterations. We observe that the maximum number of iterations can be significantly
reduced depending on the desired accuracy.

These results show that the presented gradient descent algorithm is a viable choice
for calibration. For a more detailed analysis of the gradient descent algorithm, see [5].
Within the space mapping, we limit ourselves to a maximum of four iterations, since the
evaluation of the fine model is expensive. As a calibration measure we again use the
relative cost functional reduction, the results are presented in Table 4. The results show
that the space mapping approach has only slightly lower reduction rates, except for K5.
One can improve this value by choosing a smaller ν0, as can be observed in K5a, where we
choose ν0 = 0.03. Note that the choice of ν0 is limited by the grid structure. In addition,
the calibration to ν0 can be included in the gradient descent algorithm.

Table 5 shows the overall cost functional reduction relative to the initial guess and
Table 4 shows the optimal cost functional value. Similar to the gradient algorithm, we
observe that when the cost functional reduction is small, the cost functional value is larger.

Since J(Vc(ξ∗
c );Vdata) ≈ Jf (Vf (ξ0

f );Vdata) can be significantly worse than J(Vf (ξ0
c );Vdata),

we present two figures. One figure shows the cost functional reduction per iteration, w.r.t.
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Figure 1: Cost functional reduction for the first 10 Iterations for the initial calibration for the
coarse model.

M \Guess 1 2 3 4 5 6
1 98.57 98.75 99.07 96.73 99.52 99.89
2 99.66 99.21 99.96 72.41 98.93 99.22
3 98.01 99.64 99.98 98.33 91.67 99.39
4 92.42 99.20 93.42 98.44 98.05 99.74
5 28.22 53.71 64.48 52.74 42.48 71.84
5a 44.01 46.58 43.52 61.80 73.26 79.14

Table 4: Cost functional reduction for the calibration of the space mapping.
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M \Guess 1 2 3 4 5 6
1 0.021 0.006 0.012 0.007 0.005 0.001
2 0.004 0.002 0.001 0.003 0.009 0.009
3 0.012 0.001 0.022 0.011 0.015 0.0110
4 0.027 0.010 0.2010 0.024 0.014 0.007
5 1.159 1.124 1.480 1.290 1.110 1.046
5a 0.574 0.641 1.001 0.699 0.593 0.492

Table 5: Cost functional value for the optimal calibration of the space mapping.

M \Guess 1 2 3 4 5 6
1 96.12 92.53 97.73 41.27 93.00 87.99
2 84.12 20.39 86 01 -1069.14 78.50 85.35
3 -28.13 -113.55 64.14 -5.97 -314.86 58.95
4 -317.71 -21.38 49.87 5.85 -100.91 43.96
5 -53.76 -1.80 39.41 10.54 -28.04 35.00

Table 6: Cost functional reduction for the initial guess and the calibration of the coarse model.

the initial guess ξ0
c , see Figure 2, and the other one w.r.t. the optimal calibration parame-

ters resulting from the initial coarse model calibration ξ∗
c = ξ0

f , see 3. The Figures 2 and 3
and Table 6 show that even if ξ0

f results in a higher cost functional value for the space
mapping at iteration 0, the space mapping reduces the cost functional significantly, e.g.
Guess 1 with M4, Guess 4 with M2 as well as Guess 5 with M3.

Since the purpose of this article is to introduce space mapping to computational finance
research as a proof-of-concept, no performance analysis is provided. However, by using
faster or more accurate techniques for solving the Heston PDE and its adjoint equations,
as well as for Heston calibration, the algorithm can be optimized.

6 Conclusion and Outlook
The numerical results show the feasibility of the space mapping approach as a new
calibration method in financial research. The numerical results are remarkable even
in this proof-of-concept article and can be improved in several ways, e.g., by including
time-dependent parameters, adding a calibration for ν0, and using improved computational
methods for the coarse model optimization and for the fine model solver. In particular, the
gradient descent algorithm can be easily adapted to account for time-dependent parameters
to improve space mapping for pricing Asian options since they are time-dependent, see
[5]. The space mapping approach can be applied to various other hierarchical problems in
finance, e.g. model, temporal and spatial as well as option hierarchies. Therefore, this
article is a first step towards integrating space mapping into financial applications.
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Figure 2: Cost functional reduction within the space mapping algorithm for the fine model
adjusted to ξinit.
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Figure 3: Cost functional reduction within the space mapping algorithm for the fine model
adjusted to ξ0

f .
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