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Abstract

Stop-and-go waves in road traffic are complex collective phenomena with significant implications
for traffic engineering, safety and the environment. Despite decades of research, understanding and
controlling these dynamics remains challenging. This article examines two classes of heterogeneous
car-following models with quenched disorder to shed light on the underlying mechanisms that
drive traffic instability and stop-and-go dynamics. Specifically, a scaled heterogeneity model and
an additive heterogeneity model are investigated, each of which affects the stability of linear and
nonlinear car-following models differently. We derive general linear stability conditions which we
apply to specific models and illustrate by simulation. The study provides insights into the role of
individual heterogeneity in vehicle behaviour and its influence on traffic stability.
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1. Introduction

Stop-and-go waves in road traffic are fascinating collective phenomena. Stop-and-go waves and
traffic instability are observed daily around the world. They have also been observed in experiments
[38, 27, 39], both with human drivers and with automated driver assistance systems (adaptive cruise
control systems) [37, 13, 25]. Even deep learning approaches are being developed to dissipate stop-
and-go waves [22, 16]. In addition to the scientific interest in traffic engineering, stop-and-go traffic
dynamics pose important challenges for road safety and the environment. Indeed, stop-and-go
dynamics lead to excessive fuel consumption and pollutant emissions compared to a uniform flow
of traffic [3, 2, 37, 36].

Stop-and-go waves and traffic instability are classically addressed in traffic engineering using
microscopic car-following models. Pioneering work in these areas dates back to the studies of
Reuschel and Pipes early 1950s [34, 33], Chandler, Herman and co-authors late 1950s with linear
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models [21, 7, 14], and, later, Bando, Jiang, Treiber and co-authors with non-linear models [5, 4,
17, 47, 43]. We refer the interested reader to [52, 8, 9] for a review.

Three main factors have been identified as potential causes of stop-and-go waves:

1. Delay and relaxation. In fact, the introduction of a delay or relaxation in the dynamics
of most car-following models leads to stability breaking. Such a feature has been noted since
the 1950-1960s with linear and nonlinear models [21, 7, 12, 28] and is now a consensus in
traffic engineering [26, 31, 32, 44, 42].

2. Stochastic noise. The first studies in this field were carried out using discrete cellular
automata [6, 24, 18, 15, 35]. More recently, continuous approaches are based on Langevin
and Ornstein-Uhlenbeck processes [41, 50, 46, 49, 45, 30, 51, 11, 1, 10].

3. Individual heterogeneity. Recent approaches show that heterogeneity in vehicle behaviour
can induce stability breaking or, conversely, improve the stability of vehicle trains [37]. Het-
erogeneity models can be distinguished between static models lying in the agent charac-
teristics (quenched disorder), and dynamic heterogeneity models acting in the interactions
(annealed disorder) [23, 40, 19]. A general linear stability condition for heterogeneous car-
following models with quenched disorder is given in [29].

Despite the large number of studies, understanding and controlling stop-and-go in road traffic
flow remains challenging and still nowadays an active area of research. In particular, the role of
heterogeneity and non-linearity in the shape of the model remains poorly understood.

In this article, we investigate two classes of heterogeneous car-following models with quenched
disorder: an scaled heterogeneity model where a vehicle-specific factor affects the car-following
model and an additive heterogeneity model, where, similar to a noisy model, an individual bias is
added to the model. If the scaled heterogeneity model can affect the stability of both linear and
non-linear car-following models, additive heterogeneity terms can disturb the stability of nonlinear
models; this is not the case for linear models. The full velocity difference (FVD) model [17] and
the adaptive time gap (ATG) model are used as reference linear and nonlinear models, respectively.

The paper is structured as follows. Next, we present the system setup, notations and a summary
of the main results. The car-following models, including homogeneous, heterogeneous, linear and
nonlinear models, are defined in section 2. The linear stability conditions are derived in section 3.
Some simulations illustrate the results in section 4.

1.1. Setup and notations

In the sequel, we will consider N = 3, 4, . . . vehicles of length ℓ > 0 on a segment of length
L > Nℓ with periodic boundaries, i.e. a circular road. We denote by (xn(t))

N
n=1 the positions of

the vehicles at time t ≥ 0 and assume that the vehicles are initially ordered by their index n, i.e.,

0 ≤ x1(0) ≤ x2(0) ≤ · · · ≤ xN (0) ≤ L.

We assume that the predecessor of the nth vehicle is always the (n + 1)th vehicle, while the
predecessor of the Nth vehicle is the first vehicle due to the periodic boundaries. The distance
gaps to the predecessors are the variables{

gn(t) = xn+1(t)− xn(t)− ℓ, n ∈ {1, . . . , N − 1},
gN (t) = L+ x1(t)− xN (t)− ℓ.

(1)
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The speeds of the vehicles at time t ≥ 0 are denoted by (vn(t))
N
n=1, where vn(t) = dxn(t)/dt = ẋn(t)

for all n ∈ {1, . . . , N}. The speed differences with the predecessors are given by{
∆vn(t) = vn(t)− vn+1(t), n ∈ {1, . . . , N − 1},
∆vN (t) = vN (t)− v1(t).

(2)

1.2. Summary of the results

We consider a homogeneous car-following model, defined by some universal acceleration function
F , and the equilibrium gap ge and the unique equilibrium speed ve:

v̇n(t) = F
(
gn(t), vn(t),∆vn(t)

)
, ge =: L/N − ℓ > 0, ∃! ve ∈ R, F (ge, ve, 0) = 0, (3)

and analyze the linear stability of two types of heterogeneous dynamics, namely

1. Scaled heterogeneity model

v̇n(t) = anF
(
gn(t), vn(t),∆vn(t)

)
, an > 0. (4)

2. Additive heterogeneity model

v̇n(t) = F
(
gn(t), vn(t),∆vn(t)

)
+ bn, bn ∈ R. (5)

The results show that the scaled heterogeneity factors (an)
N
n=1 in (4) can affect the linear

stability of both linear and nonlinear car-following models F . However, the additive heterogeneity
terms (bn)

N
n=1 in (5) can only affect the stability of nonlinear models (see Table 1).

Scaled heterogeneity model Additive heterogeneity model

v̇n(t) = anF (gn(t), vn(t),∆vn(t))
an > 0

v̇n(t) = F (gn(t), vn(t),∆vn(t)) + bn
bn ∈ R

Linear stabil-
ity condition

1

2
f2
v + fvf∆v ≥ fg⟨1/a⟩

• Linear model: as for the homo-
geneous model:

1

2
f2
v + fvf∆v ≥ fgFVD model:

1

2
Tλ1 + Tλ2 ≥ ⟨1/a⟩ • Nonlinear model: Model specific

ATG model:

1

2
Tλ+ 1 ≥ ⟨1/a⟩

ATG model:

N∑
n=1

bn(2λT + 1)

(bn + λve)3
+

λ3Tv2e
2(bn + λve)4

≥ 0.

Table 1: Summary of the results. Notations: fg = ∂gF (ge, ve, 0), fv = ∂vF (ge, ve, 0), f∆v = ∂∆vF (ge, ve, 0), and
⟨1/a⟩ = 1

N

∑N
n=1 1/an. The linear full velocity difference (FVD) model [17] is given by F (g, v,∆v) = λ1(g/T − v)−

λ2∆v with λ1, λ2, T > 0, while the adaptive time gap (ATG) nonlinear model [43] reads F (g, v,∆v) = λv(1−Tv/g)−
v∆v/g with λ, T > 0.
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2. Car-following models and equilibrium solutions

2.1. Homogeneous car-following models

A general homogeneous car-following model reads{
ẋn(t) = vn(t)

v̇n(t) = F
(
gn(t), vn(t),∆vn(t)

)
.

(6)

We assume that the universal acceleration function F : R3 7→ R is monotone non-decreasing with
its first argument and that there exists for any ge = L/N − ℓ > 0 a unique equilibrium speed ve
such that

F (ge, ve, 0) = 0. (7)

Both equilibrium gap ge and equilibrium speed ve are parameterised by the vehicle concentration
on the segment.

FVD and ATG models. The linear full velocity difference (FVD) model [17] is given by

F (g, v,∆v) = λ1

( g

T
− v

)
− λ2∆v, λ1, λ2, T > 0, (8)

and the nonlinear adaptive time gap (ATG) model [43] is given by

F (g, v,∆v) = λv
(
1− Tv

g

)
− v∆v

g
, λ, T > 0. (9)

For these two models, the equilibrium speed ve is

ve =
ge
T

=
L/N − ℓ

T
. (10)

2.2. Heterogeneous car-following models

A general heterogeneous car-following model with quenched disorder reads{
ẋn(t) = vn(t)

v̇n(t) = Fn

(
gn(t), vn(t),∆vn(t)

)
,

(11)

where the acceleration function Fn : R3 7→ R is specific to each vehicle. We assume that there exists
an equilibrium solution

(
(ge,n)

N
n=1, ve

)
such that

N∑
n=1

ge,n = L−Nℓ = Nge,

Fn(ge,n, ve, 0) = 0, n ∈ {1, . . . , N}.
(12)

In the sequel, we will consider two families of heterogeneous car-following models with quenched
disorder: scaled and additive heterogeneity models.
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2.2.1. Scaled heterogeneity model

The scaled heterogeneity model reads

v̇n(t) = anF
(
gn(t), vn(t),∆vn(t)

)
, an > 0. (13)

Here, anF = 0 implies F = 0 as an > 0. Therefore, the equilibrium solution of the heterogeneous
model (13) matches the solution of the homogeneous model, i.e., ge,n = ge for all n ∈ {1, . . . , N}
while ve is the solution of the equilibrium equation F (ge, ve, 0) = 0.

2.2.2. Additive heterogeneity model

The additive heterogeneity model is given by

v̇n(t) = F
(
gn(t), vn(t),∆vn(t)

)
+ bn, bn ∈ R. (14)

Here, the equilibrium solution satisfies the gap conservation and the equilibrium condition, i.e.
N∑

n=1

ge,n = Nge

F (ge,n, ve, 0) + bn = 0, n ∈ {1, . . . , N}.
(15)

Full velocity difference model.

Proposition 2.1. The equilibrium state (15) of the FVD model (8) with additive bias is given by

ve =
ge
T

+
⟨b⟩
λ1

, with ⟨b⟩ = 1

N

N∑
n=1

bn, (16)

and

ge,n = ge +
T

λ1

(
⟨b⟩ − bn

)
, n ∈ {1, . . . , N}. (17)

Proof. We obtain from (8) and (15) that λ1(ge,n/T − ve) + bn = 0 for all n ∈ {1, . . . , N} and we
can deduce

ge,n = T
(
ve −

bn
λ1

)
, n ∈ {1, . . . , N}. (18)

Using (18) and the gap conservation in (15), the equilibrium speed ve is the solution of

N∑
n=1

T
(
ve −

bn
λ1

)
= Nge, (19)

which is

ve =
ge
T

+
⟨b⟩
λ1

, ⟨b⟩ = 1

N

N∑
n=1

bn. (20)

It follows from (18) that

ge,n = T
(ge
T

+
⟨b⟩
λ1

− bn
λ1

)
= ge +

T

λ1

(
⟨b⟩ − bn

)
, n ∈ {1, . . . , N}. (21)
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The equilibrium speed (16) is non-negative if

⟨b⟩ > −geλ1

T
, (22)

while the equilibrium gaps (17) are non-negative for each vehicle if

max
n

bn <
geλ1

T
+ ⟨b⟩. (23)

Furthermore, the speed (16) matches the equilibrium speed of the homogeneous model ve = ge/T ,
and the equilibrium gaps (17) are

ge,n = ge − bn
T

λ1
, n ∈ {1, . . . , N}, (24)

if the individual bias bn is zero in average, i.e., if ⟨b⟩ = 0.

Remark 1 (Homogeneous case). If the individual bias bn is identical for all vehicles, bn = b,
n ∈ {1, . . . , N}, then the equilibrium speed (16) is

ve =
ge
T

+
b

λ1
, (25)

while the equilibrium gaps (17) are uniform: ge,n = ge, n ∈ {1, . . . , N}.

Adaptive time gap model.

Proposition 2.2. The equilibrium state (15) of the ATG model (9) with additive bias is given by

N∑
n=1

λTv2e
bn + λve

= Nge (26)

and

ge,n =
λTv2e

bn + λve
, n ∈ {1, . . . , N}. (27)

Proof. We obtain from (9) and (15) that λve(1− Tve/ge,n) + bn = 0 and we can deduce

ge,n =
Tve

bn
λve

+ 1
=

λTv2e
bn + λve

, n ∈ {1, . . . , N}. (28)

Using the gap conservation
∑N

n=1 ge,n = Nge, the equilibrium speed ve is the solution of (26).

Let us note that the equilibrium gaps ge,n (27) are positive for each vehicle if

ve > − 1

λ
min
n

bn. (29)

Remark 2. We recover the equilibrium solution of the homogeneous ATG model (10)

ve =
ge
T

and ge,n = ge, n ∈ {1, . . . , N}, (30)

if the biases are zero, i.e., bn = 0 for all n ∈ {1, . . . , N}.
6



In the case where the individual bias is the same for all vehicles: bn = b, n ∈ {1, . . . , N}, we
have

λTv2e
b+ λve

= ge. (31)

Assuming b > −λve (see (29)), we obtain

λTv2e − (b+ λve)ge = 0, (32)

and we can deduce that (we take the positive root to make ve positive)

ve =
geλ+

√
(geλ)2 + 4λTbge
2λT

=
ge
2T

(
1 +

√
1 +

4Tb

λge

)
. (33)

The equilibrium speed ve exists if 1 + 4Tb
λge

≥ 0 and we obtain the condition

b ≥ −λge
4T

. (34)

Note that (34) implies the preliminary condition b > −λve.

3. Linear stability analysis

3.1. General linear stability condition

The partial derivatives of the general heterogeneous car-following model (11) evaluated at the
equilibrium are given by

fg
n =

∂Fn

∂g
(ge,n, ve, 0), fv

n =
∂Fn

∂v
(ge,n, ve, 0), f∆v

n =
∂Fn

∂∆v
(ge,n, ve, 0). (35)

The characteristic equation of the resulting linear ODE system reads

N∏
n=1

[
z2 − z(fv

n − f∆v
n ) + fg

n

]
− e−iθN

N∏
n=1

[
−zf∆v

n + fg
n

]
= 0, z ∈ C, θ ∈ [0, 2π]. (36)

A sufficient general linear stability condition for which all eigenvalues z have non-positive real
parts, except one equal to zero (due to the periodic boundaries), is given by [29, Eq. (5)]

N∑
n=1

[
1

2

(fv
n

fg
n

)2
+

fv
nf

∆v
n

fg
nf

g
n

− 1

fg
n

]
≥ 0. (37)

For homogeneous models with fg
n = fg, fv

n = fv, and f∆v
n = f∆v, for all n ∈ {1, . . . , N},

assuming fg > 0, the linear stability condition (37) is given by [44, 48]

1

2
f2
v + fvf∆v ≥ fg. (38)

For instance, we have for the FVD model (8)

fg =
λ1

T
> 0, fv = −λ1, and f∆v = −λ2, (39)
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and thus the linear stability condition reads [17]

1

2
λ1 + λ2 ≥

1

T
. (40)

In case of the ATG model (9) we have

fg =
λ

T
> 0, fv = −λ, and f∆v = − 1

T
, (41)

and the linear stability condition
λT

2
+ 1 ≥ 1 (42)

systematically holds since λ, T > 0. Indeed, the ATG model is unconditionally linearly stable, cf.
[20].

3.2. Scaled heterogeneity model

Proposition 3.1. Assuming fg > 0,

1

2
f2
v + fvf∆v ≥ ⟨1/a⟩fg, with ⟨1/a⟩ = 1

N

N∑
n=1

1

an
, (43)

is a sufficient linear stability condition of the scaled heterogeneity model (13).

Proof. We have for the scaled heterogeneity model (13)

fg
n = anfg, fv

n = anfv, f∆v
n = anf∆v. (44)

Using the general linear stability condition (37) with these partial derivatives allows recovering
directly the condition (43).

Remark 3. The condition (43) matches the linear stability condition (38) of homogeneous models
if ⟨1/a⟩ = 1.

The condition for the FVD model (8) reads

1

2
Tλ1 + Tλ2 ≥ ⟨1/a⟩, (45)

while the linear stability condition for the ATG model (9) is given by

λT

2
+ 1 ≥ ⟨1/a⟩. (46)

Values of an less than 1 affect negatively the stability and inversely. Due to the convexity
of the inverse function, the weight of a term close to zero can be much higher than the weight
of a high term. Assuming that (an)

N
n=1 are independent and randomly distributed according to

a continuous distribution with density h on (0,∞), it is easy to check that the inverse 1/an has
a density u2h(1/u) on (0,∞). For instance, if an is uniformly distributed in [1 − κ, 1 + κ] with
0 < κ < 1, we obtain ⟨1/a⟩ → 1 + κ2. The scaled heterogeneity negatively affects the stability
although it is symmetrically distributed around 1. Note that for this special case, the stability
condition for the ATG model is asymptotically λT ≥ 2κ.
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3.3. Additive heterogeneity model

3.3.1. Linear models

Proposition 3.2. For linear models, the stability condition of the additive heterogeneity model
(14) matches the condition (38) of homogeneous models. In other words, the additive heterogeneity
does not affect the stability of linear models.

Proof. The partial derivatives are constant for linear models even in presence of additive biases,
i.e.,

fg
n = fg, fv

n = fv, f∆v
n = f∆v. (47)

for all n ∈ {1, . . . , N}. Therefore, the stability condition for linear models is the same as the
condition for homogeneous models given in (38).

3.3.2. Nonlinear models

By definition, the partial derivatives at equilibrium of nonlinear models depend on the equilib-
rium state. The equilibrium state being specific to the vehicle for the additive heterogeneity model,
see (17) of (27), it turns out that the partial derivatives are heterogeneous. The dependencies with
the biases depends on the nature of the nonlinear components of the model. This makes the linear
stability condition model specific.

Proposition 3.3. A sufficient linear stability condition of the ATG model (9) with additive het-
erogeneity (14) is given by

N∑
n=1

bn(2λT + 1)

(bn + λve)3
+

λ3Tv2e
2(bn + λve)4

≥ 0. (48)

Proof. For the ATG model (9), we obtain the partial derivatives

fg
n =

λTv2e
(ge,n)2

, fv
n = λ

(
1− 2Tve

ge,n

)
, f∆v

n = − ve
ge,n

(49)

We have

fv
n

fg
n
=

λ
(
1− 2Tve

ge,n

)
λTv2e
(ge,n)2

=
ge,n(ge,n − 2Tve)

Tv2e
, (50)

while

fv
nf

∆v
n

fg
nf

g
n

= −
λ
(
1− 2Tve

ge,n

)
ve
ge,n

λ2T 2v4e
(ge,n)4

= −(ge,n)
2(ge,n − 2Tve)

λT 2v3e
. (51)

The sufficient linear stability condition (37) is then given by

N∑
n=1

[
1

2

(ge,n(ge,n − 2Tve)

Tv2e

)2
− (ge,n)

2(ge,n − 2Tve)

λT 2v3e
− (ge,n)

2

λTv2e

]
≥ 0, (52)
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or again

N∑
n=1

(ge,n)
2

[
λ(ge,n − 2Tve)

2

2Tv2e
− ge,n − 2Tve

Tve
− 1

]

=

N∑
n=1

(ge,n)
2

[
λ(ge,n − 2Tve)

2

2Tv2e
− ge,n − Tve

Tve

]
≥ 0. (53)

Then, using ge,n = λTv2e
bn+λve

and remarking that ge,n − 2Tve = −Tve
2bn+λve
bn+λve

while ge,n − Tve =

−Tve
bn

bn+λve
, we obtain

N∑
n=1

( λTv2e
bn + λve

)2
[(

Tve
2bn+λve
bn+λve

)2

2Tv2e
+

Tve
bn

bn+λve

Tve

]
≥ 0. (54)

After simplifications (we have λ, T, ve > 0), it follows

N∑
n=1

1

(bn + λve)2

[
λT

2

(2bn + λve
bn + λve

)2
+

bn
bn + λve

]
≥ 0, (55)

or again
N∑

n=1

1

(bn + λve)4

[
λT

2
(2bn + λve)

2 + bn(bn + λve)

]
≥ 0. (56)

We have

λT

2
(2bn + λve)

2 + bn(bn + λve) = 2λTb2n +
1

2
λ3Tv2e + 2λ2Tbnve + b2n + bnλve

= b2n(2λT + 1) + bn(2λT + 1)λve +
1

2
λ3Tv2e

= bn(2λT + 1)(bn + λve) +
1

2
λ3Tv2e ,

(57)

and the linear stability condition can be written as (48).

Remark 4. Note that λ, T > 0 and the model is unconditionally linearly stable if bn = 0 for all
n ∈ {1, . . . , N}. Indeed, the homogeneous ATG model is unconditionally linearly stable [20].

The stability condition (48) holds systematically if the biases bn ≥ 0, n ∈ {1, . . . , N} are all
positive. Since traffic performance is improved when the biases are positive, this gives us a way to
improve the stability of platooning systems. Conversely, negative biases are needed to destabilise
the system.

More precisely, the right-hand term in (48) is always positive, but the left-hand term can be
negative if bn < 0 and even strongly negative (potentially breaking stability) if some bn −→

+
−λve.

However, this term is offset by the positive term, which also explodes when some bn −→
+

−λve, and

even faster than the negative term (exponent 4 versus exponent 3). This suggests that moderately
negative bn ∈ [−λve, 0] can destabilise the system.
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When all individual biases are the same, i.e., bn = b > −λge/(4T ) for all n ∈ {1, . . . , N},
dividing by λTv2e the last line of (57) and using (31), we obtain the linear stability condition of
the ATG model

b ≥ −λ2ge
4Tλ+ 2

. (58)

The bias has to be negative and sufficiently low, especially for high λ or low T , to destabilise the
system.

4. Numerical results

In this section we present some numerical results to illustrate the investigations. We focus
on the linear FVD model (8) and the nonlinear ATG model (8) with additive heterogeneity (14).
Indeed, theoretical results show that linear models with additive heterogeneity are systematically
stable if the initial model is stable, see Proposition 3.2. However, nonlinear models such as the
ATG model may be unstable for large additive biases, especially negative ones, see (48).

4.1. Numerical schemes

The car-following models are simulated using an implicit Euler scheme for the positions of the
vehicles, and an explicit Euler scheme for the speeds. In both schemes the time step is δt = 0.01 s.

Full Velocity Difference Model. For the FVDmodel (8) with additive heterogeneity (13), the scheme
for the n-th vehicle, n ∈ {1, . . . , N}, is given by: xn(t+ δt) = xn(t) + δtvn(t+ δt),

vn(t+ δt) = vn(t) + δt
[
λ1

(gn(t)
T

− vn(t)
)
− λ2∆vn(t) + bn

]
,

(59)

where T = 1 s, λ1 = 1 s−1, λ2 = 0.5 s−1. Such a setting is such that the stability condition of the
homogeneous FVD model (40) holds and is critical. The additive biases (b1, . . . , bN ) are assumed
to be initially randomly distributed on [−5, 5] m/s, independent, and constant over the time. The
FVD model, being linear, remains stable even in the presence of large biases (see Proposition 3.2).

Adaptive Time Gap Model. The ATGmodel (9) is nonlinear and has a singularity when the distance
gap g is zero. However, negative gaps (i.e., collisions between the vehicles) can be expected during
the simulations, especially if the model is unstable. To extend the definition of the model even in
the cases where the gap is negative, we reformulate the ATG model as

v̇n(t) = λvn(t)
(
1− Tvn(t)

gn(t)

)
− vn(t)∆vn(t)

gn(t)
,

=
1

Tn(t)

(
λ(gn(t)− Tvn(t))−∆vn(t)

)
,

where

Tn(t) =
gn(t)

vn(t)
, vn(t) > 0,
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is the time gap of the n-th vehicle, n ∈ {1, . . . , N}. We bound the time gap in [Tmin, Tmax] using
the mollifier Tε

(
gn(t), vn(t)

)
given by

Tε(g, v) = fε

(
Tmin, f−ε

(
Tmax,

g

fε(0, v)

))
, (60)

where fε is the LogSumExp function

fε(a, b) = ε log
(
exp(a/ε) + exp(b/ε)

)
, ε = 0.01. (61)

The function fε(a, b) converges to the maximum of a and b as ε → 0+, and to the minimum as
ε → 0−. This smoothing of the dynamics avoids singularities when the vehicles collide or when the
speed is negative. The numerical scheme for the extended ATG model with additive heterogeneity
for the n-th vehicle, n ∈ {1, . . . , N}, is finally

xn(t+ δt) = xn(t) + δtvn(t+ δt),

vn(t+ δt) = vn(t) + δt
[λ(gn(t)− Tvn(t)

)
−∆vn(t)

Tε

(
gn(t), vn(t)

) + bn

]
.

(62)

The parameter values for the simulation are λ = 0.2 s−1, Tmin = 0.1 s, and Tmax = 4 s, while the
desired time gap is T = 1 s, as for the FVD model. The additive biases (b1, . . . , bN ) are assumed
to be initially randomly distributed on [−1, 1] m/s, independent, and constant over the time. Such
parameterization is such that the stability condition (48) does not hold, i.e., the ATG model (62)
with additive heterogeneity is unstable.

4.2. Simulation results

The simulations are performed with 20 vehicles of length ℓ = 5 m on a segment of length
L = 230 m with periodic boundaries, starting from a uniform initial condition. Such a setting is
similar to the scenarios of the experiments carried out in Japan in 2007 [38] and more recently in
the United States [37], which show rapid formation of stop-and-go waves.

We compare the dynamics obtained with the linear FVD model, which remains stable even in
the presence of acceleration biases, with the nonlinear ATG model, where the biases induce an
instability. The trajectories of the vehicles over the first 200 seconds are shown in Fig. 1, while the
standard deviations of the vehicle distances and speeds are shown in Fig. 2.

On the one hand, the system converges to an equilibrium with heterogeneous gaps, due to accel-
eration biases (b1, . . . , bN ), see Fig. 1, left panel. The gap deviation converges to a constant while
the speed deviation converges to zero (see Fig. 2, grey curves). The biases affect the equilibrium
solution. However, the FVD model, being linear, remains stable (see Proposition 3.2).

On the other hand, the biases affect both the equilibrium and the stability of the nonlinear
ATG model. Indeed, the stability condition (48) no longer holds for the chosen parameter setting.
The dynamics show the emergence of a stop-and-go wave (see Fig. 1, right panel), while the gap
and speed standard deviations converge to a limit cycle (see Fig. 1, blue curves).

5. Conclusion

The results presented in this paper show that simple static heterogeneity mechanisms in driver
behaviour (quenched disorder), here an individual additive bias in acceleration, see (13), can affect
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Figure 1: Trajectories of 20 vehicles on a segment of length L = 230 m with periodic boundaries from uniform initial
conditions. Left panel: Linear FVD model (59) with additive heterogeneity (stable). Right panel: nonlinear ATG
model (62) with additive heterogeneity (unstable). The FVD model remains stable even even in the presence of
acceleration biases and converges to an equilibrium with heterogeneous gaps, while the biases perturb the stability
of the ATG model, which converges to a limit cycle with a stop-and-go wave propagating downstream.

the stability of nonlinear models and lead to the emergence of stop-and-go waves. Such a result
is specific to nonlinear models, as the stability of linear models is inherently robust to additive
acceleration biases. However, scalar heterogeneity models (14) can affect the stability of both
linear and nonlinear models, see (43). In general, we can conclude that static heterogeneity in
driver behaviour can lead to traffic instability and stop-and-go dynamics. However, other factors
can also affect the stability of a line of vehicles, such as control delay, stochastic noise or, again,
limited acceleration capacity. Stable car-following models and adaptive cruise controllers should
consider these factors in a unified framework.
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Figure 2: Time evolution of the empirical speed (left panel) and gap (right panel) standard deviations for the two
scenarios shown in Fig. 1. The gap standard deviation converges and the speed standard deviation tends to zero for
the stable FVD model (grey curves), while the system converges to a limit cycle with a stop-and-go wave for the
unstable ATG model (blue curves).
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