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We consider reflectionless wave propagation in networks modeled in terms of the nonlocal nonlinear
Schrödinger (NNLS) equation on metric graphs, for which transparent boundary conditions are
imposed at the vertices. By employing the “potential approach” previously used for the nonlinear
Schrödinger equation, we derive transparent boundary conditions for the NNLS equation on metric
graphs. These conditions eliminate backscattering at graph vertices, which is crucial for minimizing
losses in signal, heat, and charge transfer in various applications such as optical fibers, optoelectronic
networks, and low-dimensional materials.

Keywords: NNLS equation, metric graphs, transparent boundary conditions, potential approach, nonlinear
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I. INTRODUCTION

Nonlocal nonlinear Schrödinger (NNLS) equation attracted much attention since its pioneering study by Ablowitz
and Muslimani published in the Ref. [1], where they showed integrability of the problem and obtained a soliton solution.
An interesting feature of the soliton solution of the NNLS equation obtained by Ablowitz and Muslimany is caused
by its nonlocality, i.e. the solution at a point x1 depends on the solution at point −x1. Another important feature
is the fact that the NNLS equation is PT-symmetric. Later, various aspects of the NNLS equation were studied in a
series of papers by Ablowitz and Muslimani [2–7] and other authors (see, e.g., Refs. [8–14]). Besides nonlocality and
PT symmetry, the NNLS equation has practical importance from the viewpoint of practical applications in nonlinear
optics and some ferromagnetic structures. Here we consider the problem of the NNLS equation on metric graphs with
a focus on transparent vertex boundary conditions. The latter means the boundary conditions that ensure the absence
of backscattering at the graph vertex. To do this, we use the so-called “potential approach”, which was previously
used to impose transparent vertex boundary conditions for the nonlinear Schrödinger equation on metric graphs [15].

The motivation for the study of transparent boundary conditions in networks comes from their application in several
technologically important problems, such as tunable soliton dynamics in branched optical fibers and optoelectronic
networks, and the control of quasiparticle transport in low-dimensional branched functional materials. We note that
evolution equations on metric graphs have attracted much attention in different context for past two decades [16–26].
In all these cases, it is necessary to reduce losses in signal, heat and charge transfer along the structure by constructing
an appropriate network architecture.

The paper is organized as follows. In Section II we briefly introduce soliton solutions and conserving quantities
for NNLS equation on a line and recall the main steps of deriving the transparent boundary conditions (TBCs). In
Section III we derive TBCs for the NNLS equation on metric graphs. Section IV demonstrates the verification of the
obtained results by a numerical experiment. Finally, Section V contains the concluding remarks.

II. TRANSPARENT BOUNDARY CONDITIONS FOR THE NONLOCAL NONLINEAR
SCHRÖDINGER EQUATION ON A LINE

A. Soliton solutions of the nonlocal nonlinear Schrödinger equation

Let us consider the NNLS equation on a line

i∂tq(x, t) + ∂2xq(x, t) + 2q(x, t)q∗(−x, t)q(x, t) = 0, (1)

where q∗ denotes the complex conjugate of q and the self-induced potential, which can be defined as V (x, t) =
2 q(x, t) q∗(−x, t), has the PT-symmetric property, i.e. V (x, t) = V ∗(−x, t). Note that the nonlocality of Eq. (1)
arises from the term q∗(−x, t) which implies that the solution q(x, t) at coordinate x always requires information
from the opposite point −x. For the above NNLS equation, there are many different types of soliton solutions, such
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as breathing, periodic, rational, and others. For example, a single soliton solution found by the inverse scattering
method in Ref. [1] is written as:

q(x, t) = − 2(η1 + η̄1) e
iθ̄1 e4iη̄

2
1t e−2η̄1x

1 + ei(θ1+θ̄1) e−4i(η2
1−η̄2

1)t e−2(η1+η̄1)x
, (2)

with η1, η̄1, θ1, and θ̄1 being real constants. An important feature of this soliton solution (2) is the fact that it
describes a wave that looks like a “bird that flaps its wings but does not fly/move”.

A traveling soliton solution of Eq. (1) derived in Ref. [8] is written as

q(x, t) =
α1 e

−∆/2 e(ξ̄1R−ξ1R)+i(ξ̄1I−ξ1I)

2
[
cosh(χ1) cos(χ2) + i sinh(χ1) sin(χ2)

] , (3)

where χ1 = (ξ1R + ξ̄1R + ∆R)/2, χ2 = (ξ1I + ξ̄1I + ∆I)/2, ξ1R = −k1I(x + 2k1Rt), ξ1I = k1Rx − (k21I − k21R)t,
ξ̄1R = −k̄1I(x+ 2k̄1Rt), ξ̄1I = k̄1Rx− (k̄21R − k̄21I)t,

∆R = log
( |α1|2|β1|2

|k1 + k̄1|2
)
, ∆I = − i

2
log

(α1β1(k
∗
1 + k̄∗1)

2

α∗
1β

∗
1(k1 + k̄1)2

)
, ∆ = log

(
− α1β1

(k1 + k̄1)2

)
,

with α1, β1, k1 and k̄1 are arbitrary complex constants, k1R, k̄1R and k1I , k̄1I are real and imaginary parts of k1, k̄1,
respectively.

The integrability of the problem was proved in [1], which means that the NNLS equation has infinitely many
conservation laws. In particular, two important conservation quantities, the norm and the energy, were derived in [1]
and are as follows

N(t) =

+∞∫
−∞

q(x, t) q∗(−x, t) dx,

E(t) =

+∞∫
−∞

[
∂xq(x, t) · ∂xq∗(−x, t) + q2(x, t) · q∗2(−x, t)

]
dx.

(4)

The above soliton solutions of Eq. (1) are obtained assuming decay conditions at infinity, i.e. q(x, t) → 0 for
x→ ±∞.

B. Transparent boundary conditions

Here, following Ref. [27], we briefly recall the problem of transparent boundary conditions (TBCs) for the NNLS
equation on a line, which is based on the use of the so-called potential approach, which was first proposed in [28].
The effectiveness of this approach in deriving TBCs for various nonlinear evolution equations has been shown in the
Refs. [27, 29, 30]. Within the framework of this approach, the NNLS equation can be formally reduced to the linear
Schrödinger equation

i∂tq(x, t) + ∂2xq(x, t) + V (x, t)q(x, t) = 0, (5)

with the potential V (x, t) = 2q(x, t)q∗(−x, t). By introducing a new unknown Q(x, t) given by the relation

Q(x, t) = e−iV(x,t) q(x, t), (6)

with

V(x, t) =
∫ t

0

V (x, s) ds, (7)

we obtain the Schrödinger equation in terms of Q(x, t) as

L(x, t, ∂x, ∂t)Q = i∂tQ+ ∂2xQ+A∂xQ+BQ = 0, (8)
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where A = 2i∂xV and B = (i∂2xV − (∂xV)2). Using the pseudo-differential operator calculus [31] one can linearize
Eq. (8) as

L = (∂x + iΛ−)(∂x + iΛ+) = ∂2x + i(Λ+ + Λ−)∂x + iOp(∂xλ
+)− Λ+Λ−, (9)

where λ+ is the principal symbol of the operator Λ+ and Op(p) denotes the associated operator of a symbol p. The
Eqs. (8) and (9) lead to the system of operators

i(Λ+ + Λ−) = A,

i Op(∂xλ
+)− Λ+Λ− = i∂t +B.

(10)

Since the two functions A and B correspond to zero-order operators (Op(a) = A and Op(b) = B), one obtains the
symbolic system of equations as

i(λ+ + λ−) = a,

i∂xλ
+ −

+∞∑
α=0

(−1)α

α!
∂ατ λ

−∂αt λ
+ = −τ + b.

(11)

An asymptotic evolution in the inhomogeneous symbols can be written as

λ± ∼
+∞∑
j=0

λ±1/2−j/2. (12)

One can determine the 1/2-order terms in the first relation of the system (11) by substituting the expansion (12) into
Eq. (11):

λ−1/2 = −λ+1/2, λ+1/2 = ±
√
−τ . (13)

Here, the choice λ+1/2 = ±
√
−τ corresponds to the Dirichlet-to-Neumann (DtN) operator. The system of equations

for the zeroth-order terms can be written as

λ−0 = −λ+0 − ia,

i∂xλ
+
1/2 − (λ−0 λ

+
1/2 + λ+0 λ

−
1/2) = 0.

(14)

Then, from Eq. (14) we obtain

λ+0 = −i
a

2
=

1

2
∂xV,

λ−0 = −λ+0 − ia =
1

2
∂xV.

(15)

Since ∂αt λ
±
−1/2 = ∂ατ λ

±
0 = 0, α ∈ N , for the terms of order −1/2 we get

i(λ+−1/2 + λ−−1/2) = 0,

i∂xλ
+
0 − (λ−−1/2λ

+
1/2 + λ+0 λ

−
0 + λ+−1/2λ

−
1/2) = b.

(16)

From Eq. (16) we obtain

λ±−1/2 = 0. (17)

In the same way one can obtain the terms of the next order as

λ−−1 = −λ+−1, λ+−1 = i
∂xV

4τ
. (18)

As a result, TBCs were derived up to the second-order approximation:

∂xq
∣∣
x=−L

− e−iπ4 eiV∂
1/2
t (e−iVq)

∣∣
x=−L

− i
∂xV

4
eiVIt(e

−iVq)
∣∣
x=−L

= 0, (19a)

∂xq
∣∣
x=L

+ e−iπ4 eiV∂
1/2
t (e−iVq)

∣∣
x=L

+ i
∂xV

4
eiVIt(e

−iVq)
∣∣
x=L

= 0. (19b)
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FIG. 1: The simplest symmetric star graph with four bonds.

where the operator ∂
1/2
t , which denotes the half-order fractional time derivative operator, is defined as

(∂
1/2
t f)(t) =

1√
π
∂t

∫ t

0

f(s)√
t− s

ds, (20)

and the operator It(f) is

(Itf)(t) =

∫ t

0

f(s) ds. (21)

III. TRANSPARENT BOUNDARY CONDITIONS FOR THE NONLOCAL NONLINEAR
SCHRÖDINGER EQUATION ON METRIC GRAPHS

A. Nonlocal nonlinear Schrödinger equation on a star graph

One of the restrictions on the class of initial conditions for NNLSE is that they must be even (in x), which makes
the initial data symmetric with respect to the y-axis. Taking this property into account, we consider the simplest
possible star graph with an even number of bonds (see, Fig. 1). The nonlocal nonlinear Schrödinger equation is
written on each bond of the star graph with bonds b±j to which a coordinate x±j is assigned. We choose the origin
of the coordinates at the vertex so that the bond b−j takes values x−j ∈ (−∞, 0) and for bj we fix xj ∈ [0,+∞):

i∂tq±j(x, t) + ∂2xq±j(x, t) +
√
βjβ−j q

2
±j(x, t)q

∗
∓j(−x, t) = 0, (22)

where q±j(x, t) are defined in x ∈ b±j , and j = 1, 2.
The Eq. (22) is a system of NNLS equations where components of q±j are mixed in the nonlinear term due to

the presence of the factor
√
βjβ−j . To solve this equation, it is necessary to impose boundary conditions at the

branching point (vertex) of the graph. Here we choose the boundary conditions derived in [32], which ensure that the
considered system is integrable, and they are derived by showing that there exists an infinite number of conservation
laws. Within this approach for the above NNLSE, the norm is determined as, cf. [1]

N(t) =

2∑
j=1

[
Nj(t) +N−j(t)

]
, N±j(t) =

∫
b±j

q±j(x, t)q
∗
∓j(−x, t) dx. (23)

Another conserving quantity, i.e., the energy, is given by

E(t) =

2∑
j=1

[
Ej(t) + E−j(t)

]
, E±j(t) =

∫
b±j

(
∂xq±j(x, t) · ∂xq∗∓j(−x, t) +

√
βjβ−j

2
q2±j(x, t) · q∗2∓j(−x, t)

)
dx. (24)

By requiring the conservation of these quantities, the time derivatives of the norm and the energy lead to the following
vertex boundary conditions [32]:

γ1q1(x, t)
∣∣
x=0

= γ−1q−1(x, t)
∣∣
x=0

= γ2q2(x, t)
∣∣
x=0

= γ−2q−2(x, t)
∣∣
x=0

,

1

γ1
∂xq1(x, t)

∣∣
x=0

+
1

γ2
∂xq2(x, t)

∣∣
x=0

=
1

γ−1
∂xq−1(x, t)

∣∣
x=0

+
1

γ−2
∂xq−2(x, t)

∣∣
x=0

,
(25)
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where the parameters γ±j are non-zero positive real numbers.
Then the solution of the problem given by Eqs. (22) and (25) can be expressed in terms of the solution of Eq. (1)

as

q±j(x, t) =

√
2

β±j
q(x, t), (26)

and it satisfies the boundary conditions (25), provided that the following conditions hold:

γ±j

γ−1
=

√
β±j

β−1
,

1

β1
+

1

β2
=

1

β−1
+

1

β−2
. (27)

A traveling soliton solution of Eq. (3) given on a graph can be written as

q±j(x, t) =

√
2

β±j

α1 e
−∆/2 e(ξ̄1R−ξ1R)+i(ξ̄1I−ξ1I)

2
[
cosh(χ1) cos(χ2) + i sinh(χ1) sin(χ2)

] . (28)

The sum rule (27) can be considered as a condition (constraint) that ensures the integrability of NNLS equation
on a metric star graph given by Eqs. (22) and (25). In other words, if the sum rule (27) is fulfilled, there exist an
analytical solution which can be expressed as Eq. (28).

B. Derivation of transparent vertex boundary conditions

In this subsection, we derive the TBCs for the nonlocal nonlinear Schrödinger equation on graphs by applying
the potential approach used in the derivation of TBCs on a line. Subsequently, the NNLS equation can be formally
written as a linear PDE

i∂tq±j(x, t) + ∂2xq±j(x, t) + V±j(x, t)q±j(x, t) = 0, (29)

where V±j(x, t) =
√
βjβ−j q±j(x, t)q

∗
∓j(−x, t).

Now we split the whole domain (graph) into two subdomains, which we call “interior” (bonds b±1) and “exterior”
(bonds b±2). We use these terminologies to be consistent with those that were used for the problem considered on a
line. Moreover, the terminologies are borrowed from the original works [33–36], in which the basic idea of constructing
TBCs was proposed. Accordingly, we consider in the sequel interior and exterior problems. The interior problem for
b±1 can be written as

i∂tq±1 + ∂2xq±1 + V±1(x, t)q±1 = 0,

q±1

∣∣
t=0

= QI(x),

∂xq±1

∣∣
x=0

= ±(T0q±1)
∣∣
x=0

,

(30)

where QI(x) is an initial condition and T0 is yet an unknown operator that determines the TBCs.
The exterior problems for b±2 reads

i∂tq±2 + ∂2xq±2 + V±2(x, t)q±2 = 0,

q±2

∣∣
t=0

= 0,

q±2

∣∣
x=0

= ψ±2(t), ψ±2(0) = 0,

(T0ψ±2)
∣∣
x=0

= ∓∂xq±2

∣∣
x=0

.

(31)

We introduce a new function

µ±j(x, t) = e−iν±j(x,t)q±j(x, t), (32)

where

ν±j(x, t) =

∫ t

0

V±j(x, τ) dτ =
√
βjβ−j

∫ t

0

q±j(x, τ)q
∗
∓j(−x, τ) dτ. (33)
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(a) (b)

(c) (d)

FIG. 2: Soliton dynamics at different time moments, i.e., t = 0 (a), t = 0.9 (b), t = 1.1 (c) and t = 2 (d) when the
sum rule in Eq. (27) is fulfilled by choosing the following values of the nonlinearity coefficients: β±1 = 6 and β±2 = 2.

Then, the TBCs of the second order approximation (19) for q±2 at x = 0 can be written as

∂xq±2

∣∣
x=0

= ±e−iπ4 eiν±2 · ∂1/2t (e−iν±2q±2)
∣∣
x=0

± i
1

4
∂xV±2e

iν±2It(e
−iν±2q±2)

∣∣
x=0

, (34)

where the fractional 1/2-derivative and It are given by (20) and (21), correspondingly.
Thus, we find the T0 operator for q±j for x = 0 as

(T0q±j)
∣∣
x=0

= −e−iπ4 eiν±2 · ∂1/2t (e−iν±jq±j)
∣∣
x=0

− i
1

4
∂xV±je

iν±jIt(e
−iν±jq±j)

∣∣
x=0

. (35)

To find the TBC for q±1 at x = 0, we apply operator T0 to q±1 as

∂xq±1|x=0 = ∓e−iπ4 eiν±2 · ∂1/2t (e−iν±2q±2)
∣∣
x=0

∓ i
1

4
∂xV±2e

iν±2It(e
−iν±2q±2)

∣∣
x=0

. (36)

From the continuity of the solution in Eq. (25) we have

ν−1(0, t) = ν−2(0, t) = ν1(0, t) = ν2(0, t),

V−1(0, t) = V−2(0, t) = V1(0, t) = V2(0, t),√
β−1(T0q−1)

∣∣
x=0

=
√
β1(T0q1)

∣∣
x=0

=
√
β−2(T0q−2)

∣∣
x=0

=
√
β2(T0q2)

∣∣
x=0

.

(37)

And the current conservation condition in (25) leads to

1√
β−1

(T0q−1)
∣∣
x=0

+
1√
β1

(T0q1)
∣∣
x=0

=
1√
β−2

(T0q−2)
∣∣
x=0

+
1√
β2

(T0q2)
∣∣
x=0

. (38)
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FIG. 3: Dependence of the norm conservation on values of parameter β−1 and β1 for fixed β−2 = β2 = 2.

(a) (b)

(c) (d)

FIG. 4: Soliton dynamics at different time moments, i.e., t = 0 (a), t = 0.9 (b), t = 1.1 (c) and t = 2 (d) when the
sum rule in Eq. (39) is fulfilled by choosing the following values of the nonlinearity coefficients: β−1 = β−2 = 2 and

β1 = β2 = 6.

Comparing the above Eqs. (37) and (38) gives

1

β−1
+

1

β1
=

1

β−2
+

1

β2
. (39)

Thus, fulfilling the sum rule (39) implies that the vertex boundary conditions (25) become equivalent to the TBCs
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(a) (b)

(c) (d)

FIG. 5: Soliton dynamics at different time moments, i.e., t = 0 (a), t = 0.9 (b), t = 1.1 (c) and t = 2 (d) when the
sum rules in Eqs. (27) and (39) are broken by choosing the following values of the nonlinearity coefficients:

β−1 = β1 = 2 and β−2 = 0.5, β2 = 1.

at the vertex of the graph. In other words, the vertex becomes “transparent” with respect to soliton transmission.
However, since the solution given by Eq. (26) describes a traveling soliton, such “transparency” implies that solitons
moving from bonds b±1 to bonds b±2 transmit through the vertex without any reflection. Such a property can be
demonstrated in the numerical experiments presented in the next section. Note that the sum rule (39) is different from
the one given by (27) and they coincide only if the parameters β±j have certain values (for example, if all parameters
have the same value, β−1 = β1 = β−2 = β2, which implies natural boundary conditions). This implies that unlike to
the case of classical NLS equation [15, 17], for NNLS equation on metric graphs, integrability is not equivalent to the
“transparency” of the vertex.

IV. NUMERICAL EXPERIMENT

Here we show the results of a numerical experiment performed to verify the results of deriving transparent vertex
boundary conditions (TVBCs) for the nonlocal nonlinear Schrödinger equation on the star graph shown in Fig. 1. In
this numerical experiment we use Runge-Kutta method. In all examples we will use the following initial setup: the
initial conditions are imposed on b−1 and b1 symmetric bonds and chosen as analytical solutions in Eq. (28), where
its parameters are given as α1 = 1.13 + 1.13i, β1 = 1.13 − 1.13i (should not be confused with BC parameters) and
k1 = ±2.5 + 1.5i, k̄1 = ∓2.5 + 1.5i for b±1 bonds, respectively.
As a first example we consider the case, when the sum rule (27) is satisfied. The evolution of the traveling solitons

for this case is shown in Fig. 2 in four consecutive time steps. This example can be supported by determining the set
of parameters pairs (β−1, β1) for some fixed β−2 = β2. Fig. 3 shows the dependence of the deviation of the norm from
its mean as a function of the parameters (β−1, β1). In this figure you can see the conservation of the norm along the
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FIG. 6: Dependence of the reflection coefficient on values of parameter β−1 and β1 for fixed β−2 = β2 = 2.

red line. The deviation of the norm from its mean over the whole time is defined as

Nerr =

∫ T

0

|N̄ −N | dt, (40)

where

N̄ =
1

T

∫ T

0

N(t) dt

is the average value of the total norm over the whole time and T is the total traveling time.
The second example is the case when the sum rule (39) is fulfilled, i.e. when TBCs are imposed at the central vertex.

Fig. 4 shows the evolution of the traveling solitons for this case in four consecutive time steps. The reflectionless
transmission of the solitons is evident from this plot. As a last example, we consider the case where the sum rule is
violated. The results of the calculations are shown in Fig. 5. In this plot one can observe the reflection at the vertex
of the graph.

Note that the choice of parameters (β−1, β1) is obviously not unique for some fixed β−2 and β2. This can be verified
by plotting the dependence of the reflection coefficient on the parameters (β−1, β1). For some fixed time instant t0,
the reflection coefficient can be defined as

R =
N−1 +N1

N−1 +N1 +N−2 +N2
, (41)

where N±j are partial norms in Eq. (23) of bonds b±j at time t0. The plot of the reflection coefficient as a function
of the BC parameters (β−1, β1) for fixed β−2 = β2 = 2 at sufficient time (t = 2) is shown in Fig. 6. From this plot
one can see the black curve (highlighted by the red line) bounded by the values of the parameters (β−1, β1) that
satisfy the equation β−1

−1 + β−1
1 = 1. This shows the manifestation of the reflectionless transition of solitons when the

constraint (39) is satisfied.

V. CONCLUSIONS

In this paper, we have derived transparent boundary conditions for the PT-symmetric nonlocal nonlinear
Schrödinger equation on metric graphs using the so-called potential approach. Constraints that make transpar-
ent boundary conditions to weight-continuity and generalized Kirchhoff conditions are derived. Numerical utilization
of transparent boundary conditions and numerical proof of their equivalence to weight-continuity and generalized
Kirchhoff rules are provided. For PT-symmetric solitons, the transparency implies the reflectionless transmission of
a “wing” of the soliton from the bond b±1 to the bond b±2. The results obtained in this work can be applied to the
modeling of optical networks and optoelectronic devices using PT-symmetric solitons, so that the minimum signal
loss can be achieved by tuning the soliton propagation.



10

Acknowledgment

The work is supported by the grant of the Agency for innovative development under the Ministry of higher education,
science and innovation of the Republic of Uzbekistan (Ref. No. F-2021-440) and by the Grant REP-04032022/206,
funded under the MUNIS Project, supported by the World Bank and the Government of the Republic of Uzbekistan.

[1] M.J. Ablowitz and Z.H. Musslimani, Phys. Rev. Lett. 110, 064105 (2013).
[2] M.J. Ablowitz and Z.H. Musslimani, Phys. Rev. E 90, 032912 (2014).
[3] M.J. Ablowitz and Z.H. Musslimani, Nonlinearity 29, 915 (2016).
[4] M.J. Ablowitz and Z.H. Musslimani, Stud. Appl. Math. 139, 7 (2016).
[5] B-F. Feng, X-D. Luo, M.J. Ablowitz, and Z.H. Musslimani, Nonlinearity 31, 5385 (2018).
[6] M.J. Ablowitz, X-D. Luo, and Z.H. Musslimani, J. Math. Phys. 59, 011501 (2018).
[7] M.J. Ablowitz, Z.H. Musslimani, J. Phys. A 52, 15LT02 (2019).
[8] S. Stalin, M. Senthilvelan, and M. Lakshmanan, Phys. Lett. A 381, 2380 (2017).
[9] Z. Wen and Zh. Yan, Chaos 27, 053105 (2017).

[10] J. Yang, Phys. Rev. E 98, 042202 (2018).
[11] D. Sinha and P.K. Ghosh, Phys. Rev. E 91, 042908 (2015).
[12] R. Rusin, R. Kusdiantara, and H. Susanto, Phys. Lett. A 383, 2039 (2019).
[13] Z. Wen and Zh. Yan, Chaos 27, 053105 (2017).
[14] O. Maor, N. Dror, and B.A. Malomed, Opt. Lett. 38, 5454-5457 (2013).
[15] J.R. Yusupov, K.K. Sabirov, M. Ehrhardt, and D.U. Matrasulov, Phys. Rev. E, 100, 032204 (2019).
[16] R.Adami, C. Cacciapuoti, D. Finco, D. Noja, Rev. Math. Phys, 23 4 (2011).
[17] Z. Sobirov, D. Matrasulov, K. Sabirov, S. Sawada, and K. Nakamura, Phys. Rev. E 81, 066602 (2010).
[18] D. Noja, Philos. Trans. R. Soc. A 372, 20130002 (2014).
[19] D. Noja, D. Pelinovsky, and G. Shaikhova, Nonlinearity 28, 2343 (2015).
[20] R. Adami, C. Cacciapuoti, D. Noja, J. Diff. Eq. 260, 7397 (2016).
[21] V. Caudrelier, Comm. Math. Phys. 338, 893 (2015).
[22] R Adami, E Serra, P Tilli, Commun. Math. Phys. 352, 387 (2017).
[23] A. Kairzhan, D.E. Pelinovsky, J. Phys. A: Math. Theor. 51, 095203 (2018).
[24] J.R. Yusupov, Kh.Sh. Matyokubov, K.K. Sabirov. and D.U. Matrasulov, Chem. Phys. 537, 110861 (2020).
[25] D. Matrasulov, K. Sabirov, D. Babajanov, and H. Susanto, EPL 130, 67002 (2020).
[26] K.K. Sabirov, M.E. Akramov, R. Sh. Otajonov, and D.U. Matrasulov, Chaos, Solitons & Fractals 133, 109636 (2020).
[27] M.E. Akramov, J.R. Yusupov, M. Ehrhardt, H. Susanto, and D.U. Matrasulov, Phys. Lett. A 459, 128611 (2023).
[28] X. Antoine, Ch. Besse, and S. Descombes, SIAM J. Numer. Anal. 43, 2272 (2006).
[29] K.K. Sabirov, J.R. Yusupov, M.M. Aripov, M. Ehrhardt, and D.U. Matrasulov, Phys. Rev. E 103, 043305 (2021).
[30] K. K. Sabirov, J. R. Yusupov, M. Ehrhardt, D. U. Matrasulov. Phys, Lett. A 423, 127822 (2021).
[31] M. Taylor, Pseudo Differential Operators, Springer, 2006.
[32] M. Akramov, K. Sabirov, D. Matrasulov, H. Susanto, S. Usanov, and O. Karpova, Phys. Rev. E 105, 054205 (2022).
[33] M. Ehrhardt, VLSI Design 9(4), 325 (1999).
[34] M. Ehrhardt and A. Arnold, Riv. di Math. Univ. di Parma 6(4), 57 (2001).
[35] A. Arnold, M. Ehrhardt, and I. Sofronov, Commun. Math. Sci. 1(3), 501 (2003).
[36] X. Antoine, A. Arnold, C. Besse, M. Ehrhardt, and A. Schädle, Commun. Comput. Phys. 4(4), 729 (2008).


