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Abstract

Modeling electric circuits that contain magnetoquasistatic (MQS) devices
leads to a coupled system of differential-algebraic equations (DAEs). In our
case, the MQS device is described by the eddy current problem being already
discretized in space (via edge-elements). This yields a DAE with a properly
stated leading term, which has to be solved in the time domain. We are
interested in structural properties of this system, which are important for
numerical integration. Applying a standard projection technique, we are
able to deduce topological conditions such that the tractability index of the
coupled problem does not exceed two. Although index-2, we can conclude
that the numerical difficulties for this problem are not severe due to a linear
dependency on index-2 variables.

Keywords: modified nodal analysis, differential-algebraic equations,
tractability index, electromagnetic devices, Maxwell’s equations, finite
integration technique, structural analysis, eddy currents

1. Introduction

Usually in a technology computer aided design environment, electric cir-
cuits are simulated as networks of basic elements. In this context, devices
such as complex semiconductors or even conductors and their interactions
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are described by corresponding subcircuits. That is, these devices are mod-
eled via equivalent circuits containing only basic elements. Most often, the
set-up of equations uses modified nodal analysis (MNA), which we also em-
ploy. Today, chip technology develops rapidly and the complexity of the
above mentioned devices grows fast and plays a vital role in circuit design.
This has two consequences. On the one hand, the corresponding equiva-
lent circuits have become more and more complex and they contain already
hundreds of parameters, most of them without a direct physical interpre-
tation, [5]. On the other hand, the device simulation of spatially resolved
(complex) models is influenced by secondary effects, such as the surrounding
circuitry, which cannot any longer be neglected. This has motivated the idea
of using distributed device models, represented by a system of partial differ-
ential algebraic equations (PDAEs), to describe the behavior of the devices
in the circuit. The resulting mathematical model couples DAEs describing
the circuit and PDEs modeling the devices. Thus it gives a set of PDAEs.

To numerically simulate electrical circuits described by such a model, we
first discretize the PDEs in space (method of lines). This results in a coupled
system of DAE to be solved in simulation.

A DAE is characterized by its index, which roughly measures the equa-
tion’s sensitivity w.r.t. perturbations of the input and thus it reveals the
expected numerical difficulties in simulation. Due to various facts and view
points, there are several index definitions, which all generalize the Kronecker
index [10]. In this paper, we use as index framework the projector-based
tractability index [9, 15]. Due to its low smoothness assumptions, this frame-
work is often used in the circuit analysis community. Two further reasons for
the tractability index are: (a) it reveals a detailed view on the structure of
the equations, (b) for a large class of electric circuits described by equations
from MNA, the tractability index is exclusively determined by the circuit’s
topology (e.g. [7]). Anyhow, considering our network-field system, we expect
the same result for other index concepts.

For electric circuits of basic elements refined by distributed elements,
there are already a couple of index results. For circuits containing semi-
conductor devices which are modeled by the drift-diffusion equation, it was
shown in [2, 20, 22] that we can extend the topological index criteria of
circuits containing just the basic elements.

We investigate electric circuits refined by spatially resolved MQS devices.
The structural properties of the corresponding MQS field system, the so-
called eddy current problem, was studied first in [23]. There a Kronecker-
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index analysis is given for the linear 2D problem in the magnetic vector
potential formulation. In [19], the differential-index was used to obtain more
general results for the linear 3D-case, where a gauging becomes necessary to
obtain a uniquely solvable formulation. For electric circuits containing MQS
devices a topological circuit-condition was shown to be sufficient to yield an
overall problem of index-1.

Here, we extend the index analysis of the coupled field/circuit problem to
a more general nonlinear setting and to the case of higher index (using the
tractability index). The topological conditions for index-1 and index-2 can
be shown to be necessary. To this end, we enhance the standard arguments
from the tractability index analysis for electric circuits: in the index-1 case
we achieve this by adding an additional block of equations and unknowns for
the MQS device, and treating both parts as independent as possible. For the
index-2 case, we need to follow also an adapted strategy.

This paper is organized as follows. In the next section, we first introduce
the models for the electric circuits containing basic network elements and the
distributed, but spatially discretized, MQS device models. Then we establish
the coupling and state the coupled problem as a DAE. Section 3 contains the
main part, which is devoted to the index analysis of the deduced DAE. At
the beginning of this section, we roughly recall the basics of the tractability
index concept. Then we investigate the structural properties of the electrical
circuit including MQS devices. We point out the enhancements needed for
transferring the classical index results for electric networks [7] to our coupled
system. Eventually, we give a short numerical illustration on the simplest
example and finish with conclusions.

2. Modeling

This section contains three parts. First we describe the electric network
model including the docking interface for the MQS devices with modeling as-
sumptions. Second we address the space discretized MQS model and related
assumptions. Last, the coupled field/circuit system is formulated as coupled
DAEs.

2.1. Electric Network Model

Let us consider an electric network consisting of capacitors, inductors,
resistors, voltage and current sources with related incidence matrices (re-
duced): AC,AR,AL,AV and AI, which state the node-branch relation for
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each element type for the underlying digraph:

(A⋆)ij =





1, if branch j leaves node i

−1, if branch j enters node i

0, if branch j is not incident with node i.

In fact, each row of A⋆ refers to a network node. As usual, one node is
identified as mass (or ground) node and the corresponding row is skipped in
A⋆.

The MNA leads to equations of the form (see e.g. [7])

AC

d

dt
qC(A

⊤

Ce, t) +ARgR(A
⊤

Re, t) +ALjL +AVjV +AIis(t) = 0, (1a)

d

dt
ΦL(jL, t)−A⊤

Le = 0, (1b)

A⊤

Ve − vs(t) = 0 (1c)

with time t ∈ I, I = [t0, T ] ⊂ R. The given vector functions qC(v, t),
gR(v, t), ΦL(j, t), vs(t) and is(t) describe the constitutive relations for the cir-
cuit elements (for charge, resistance, flux, voltage source and current source,
respectively). The unknowns are the node potentials e : I → R

n, except of
the mass node, as well as the currents jL : I → R

nL through inductors and
the currents jV : I → R

nV through voltage sources (for nL inductors and nV

voltage sources, respectively). The potential at the mass node is assigned to
zero. Thus (1a) states the current balance at each network node, and (1b)
and (1c) state the constitutive relations for inductances and voltage sources,
respectively. Details can found in e.g. [22, 7].

For the later analysis loops and cutsets of branches will play a key role. A
subset of branches of a connected graph is a cutset if and only if the deletion
of that subset results in a disconnected graph and the deletion of any proper
subset of that subset does not disconnect the graph. The definition of a loop
(or circle) is clear. A tree is a subset of branches containing all nodes but no
loops. For a mathematically consistent description, we need:

Assumption 2.1 (Soundness of circuits). The circuit is connected. It con-
tains neither loops of voltage sources only nor cutsets of current sources only.
The topological conditions translate into matrix conditions as:

AV and [AC ARAL AV]
⊤ have full column rank.
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If Ass. 2.1 is violated, the circuit equations (plus initial conditions) would
have either no solution or infinite many solutions due to Kirchhoff’s laws.

Remark 2.2 (Incidence matrices). We note the following: (our incidence
matrices are always reduced)

(a) An incidence matrix AX of a subgraph has full column rank if and only
if there is no loop (in the subgraph), i.e., no X–loop.

(b) Let [AX,AY] denote the incidence matrix of a connected graph. Then
A⊤

X has full column rank if and only if there is a spanning tree of
elements from AY.
Moreover for [AX,AY] connected, A

⊤

Y has full column rank if and only
if the graph contains no cutset of elements from AX (no X–cutset).

Assumption 2.3 (Local passivity). The functions qC (v, t) ,ΦL (j, t) and
gR (v, t) are continuous differentiable with positive definite Jacobians:

C (v, t) :=
∂qC (v, t)

∂v
, L (j, t) :=

∂Φ (j, t)

∂j
, G (v, t) :=

∂gR (v, t)

∂v
.

Next, we add the electromagnetic field-elements to our system. That is,
we enlarge our list of basic elements by a field element (precisely a MQS
device), which shall consist of a number of nM separated conductors coupled
inductively using field equations. This gives an extended circuit. In the MNA
framework, we simply add the unknown current jM ∈ R

nM through the MQS
device to the current balance equation (1a) using the corresponding incidence
matrix AM. Then (1a) reads

AC

d

dt
qC(A

⊤

Ce, t)+ARgR(A
⊤

Re, t)+ALjL+AVjV+AIis(t)+AMjM=0. (2)

To obtain a uniquely solvable system we need further equations for the MQS
device which describe the unknown currents jM in terms of the other variables.
This will involve the applied potentials A⊤

Me. Before we discuss this, we now
restate Ass. 2.1 for our extended circuit:

Assumption 2.4 (Soundness of extended circuit). The circuit is connected
and the matrices

AV and [AC ARAL AV AM]
⊤ have full column rank,
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i.e., there is neither a loop containing only voltage sources nor a cutset con-
taining only current sources.

Remark 2.5. In stating the model as we do, we implicitly assume inde-
pendent voltage and current sources only. Our results can be extended to a
broad class of controlled sources [7].

2.2. MQS Device Models

Next, we derive the MQS device model from Maxwell’s space-discrete
equations on a staggered grid pair. They can be obtained from any spatial
discretization of Maxwell’s equations on a bounded domain Ω, here we use
the notation of the finite integration technique, [24],

C⌢e = −
d

dt

⌢⌢

b , C̃
⌢

h =
d

dt

⌢⌢

d+
⌢⌢

j , S̃
⌢⌢

d = q , S
⌢⌢

b = 0 (3)

with discrete curl operators C and C̃, divergence operators S and S̃ (on the
staggered grids). The variables are line-integrals of electric and magnetic field
strength ⌢e and

⌢

h (edges of the cells), respectively, and surface integrals of
source current density, discrete magnetic flux density and displacement field
⌢⌢

j ,
⌢⌢

b and
⌢⌢

d. Maxwell’s equations are closed with the constitutive material
relations:

⌢

h = Mν

⌢⌢

b ,
⌢⌢

d = Mε
⌢e ,

⌢⌢

j = Mσ
⌢e , (4)

where matrices Mν = Mν(
⌢⌢

b), Mε and Mσ represent the reluctivities (with-
out hysteresis effects), permittivities and conductivities.

For low frequencies (“eddy current problem”) the displacement current
density can be neglected with respect to the current density (on the whole
domain), [11]:

max |
d

dt

⌢⌢

d| ≪ max |
⌢⌢

j |

Furthermore, we can reformulate the problem in terms of the line-integrated
magnetic vector potential ⌢a : I → R

na (where na denotes the number of
primary edges) and the electric scalar potential Φ

⌢e = −
d

dt
⌢a + S̃⊤Φ and

⌢⌢

b = C⌢a . (5)
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Starting from Ampère’s law (second equation of (3)) neglecting the displace-
ment current density, inserting material relations and using ⌢a, this yields the
following first-order DAE (“curl-curl equation”):

M
d

dt
⌢a + C̃Mν(C

⌢a)C⌢a = MS̃⊤Φ , (6)

with the constant conductivity matrix M := Mσ and the curl-curl matrix
C̃Mν(C

⌢a)C, which depends nonlinearly on the magnitude of the flux
⌢⌢

b mod-
eling ferromagnetic saturation. During time-integrating of the curl-curl equa-
tion, the matrix pencil (evaluated for a given ⌢a)

[
M,

∂

∂⌢a

(
C̃Mν(C

⌢a)C⌢a
)]

:= λM+
∂

∂⌢a

(
C̃Mν(C

⌢a)C⌢a
)

for λ > 0

occurs naturally as the system matrix. In the implicit Euler scheme, λ is the
reciprocal time step. The pencil is singular because of the constant kernel

KerM ∩Ker
∂

∂⌢a

(
C̃Mν(C

⌢a)C⌢a
)
6= {0} for all ⌢a.

Non-conducting areas and the nontrivial kernel of the curl operator (in 3D)
are the algebraic origin and a regularization can remove the common kernel
from the matrix pencil, [3].

Assumption 2.6 (Gauge). We assume a regularization of (6)

K(⌢a) := C̃Mν(
⌢a)C+Y and k′

a(
⌢a) :=

∂

∂⌢a

(
C̃Mν(

⌢a)C⌢a
)
+Y (7)

with a positive semi-definite matrix Y such that K and k′

a are positive defi-
nite for elements in kerM, e.g. [3].

Ass. 2.6 guarantees that the matrix pencil [M,k′

a] is positive definite, i.e.,
⌢a⊤(αM+ k′

a)
⌢a > 0 for all ⌢a 6= 0 and λ > 0. Notice that in Ass. 2.6 both

matrices K and k′

a may still be only positive semi-definite.
As boundary conditions we assume that the tangential component of the

vector potential ⌢a vanishes at the boundary of the domain (Dirichlet).

MQS-device and Coupling

The coupling of the MQS device to the circuit is established by a conduc-
tive subdomain ΩM ⊂ Ω which identifies the areas, where an electric current
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contact at
the boundary

edges

reference plane

contact at
the boundary

Figure 1: Coupling as given as in [4] (for a Cartesian grid).

is imposed by the coupled circuit. In this subdomain the electric scalar po-
tential Φ is related to the circuit voltage drop vM and the integrated current
density

⌢⌢

j is related to the branch current jM of the electric circuit.
Let us consider a single solid conductor (see Fig. 1) with two perfect

conducting contacts. The 0D-voltage drops must be distributed onto the
3D-grid; this defines an applied electric field on the edges. Since we are only
interested in the line integrals of this field, let γ ∈ {−1, 0, 1}na be a path
from one contact to the other (within ΩM). Due to the linearity of Ohm’s
law (equation three in (4)), it is sufficient to consider an applied voltage
vM = 1V and define a corresponding distribution vector X̃ ∈ R

na , such that
X̃⊤γ = 1. A computationally beneficial choice [4] is to impose the voltages
only onto the edges crossing a reference plane (see Fig. 1). This yields a
sparse distribution vector (here given for the Cartesian case with an aligned,
orthogonal reference plane, Fig. Fig. 1):

(
X̃
)
i
=

{
±1 if edge i crosses the reference plane,

0 else,

where the sign depends on the directions of the edges. Already this vector
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defines a valid unit excitation for (6) as:

S̃⊤Φ := X̃vM (with vM = 1V). (8)

The excitation vM defines an applied electric field S̃⊤Φ, whose integrated
current density is not divergence-free: S̃MX̃MvM 6= 0. Thus we favor the
construction of an excitation vector X yielding a divergence-free current. For
this construction, we solve the Poisson problem, [4]

S̃MS̃⊤ΦM = S̃MX̃vM (9)

for the given vector X̃ and defining the new excitation vector as

X := X̃ − S̃⊤ΦM.

The distribution vector X is less sparse than X̃, but it yields a divergence-
free current by construction. Now, we use X instead of X̃ in (8) and apply
any voltage drop vM. By linearity, this gives the general excitation

S̃⊤Φ := XvM (10)

and states the circuit-to-MQS device coupling, where voltages are obtained
from the circuit by vM = A⊤

Me. Inserted the exitation (10) into (6) results in

M
d

dt
⌢a +K(⌢a)⌢a = MXvM. (11)

The total current through the conductor is given by integrating over the cross
section. We find by using Ohm’s Law

jM = X⊤
⌢⌢

j = X⊤M⌢e = X⊤MXvM −X⊤M
d

dt
⌢a

or equivalently (using the curl-curl equation (11))

jM = X⊤K(⌢a)⌢a, (12)

which states the MQS device-to-circuit coupling.
In the case of a multiport MQS device (nM > 1), e.g., a transformer

with two coils, several coupling vectors must be constructed as explained
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above. Then the coupling is carried out in several (disjunct) subdomains by
a coupling matrix X ∈ R

na×nM .

Remark 2.7. Special choices of the conductivity matrix M yield certain
conductor models (e.g. stranded or foil conductors). Still, using algebraic
manipulations, the coupling can be brought into the structure of (11) and
(12), [19].

2.3. Coupled Problem

Assembling the equations of the MNA (2), (1b), (1c) for the extended
circuit and the space discrete Maxwell equations (11), we can formulate the
field/circuit coupled system

AC

d

dt
qC(A

⊤

Ce, t) +ARgR(A
⊤

Re, t) +AL jL +AVjV +AIis(t)

+AMX
⊤K(⌢a)⌢a = 0,

d

dt
ΦL(jL, t)−A⊤

Le = 0,

A⊤

Ve − vs(t) = 0,

M
d

dt
⌢a +K(⌢a)⌢a −MXA⊤

Me = 0,

(13)

where the MQS-current (12) is already inserted into the current balance (2).
The unknows of (13) are e, jL, jV,

⌢a. For this system with these unknowns,
we will derive the structural analysis in the following.

3. Index Analysis

The tractability index is a projector-based approach. It provides an in-
dex characterization in terms of the original problem’s unknowns, leads to
a precise solution description and requires low smoothness of the involved
functions [9, 15]. First, we summarize the key ingredients, then we apply the
index concept to our coupled problem.

3.1. Tractability Index

We investigate the DAE

A
d

dt
d (x, t) + b (x, t) = 0 (14)
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with constant matrix A ∈ R
m×n, coefficient functions d (x, t) ∈ R

n and
b (x, t) ∈ R

m. We assume both coefficient functions to be continuous and
that continuous partial derivatives d′

x
(x, t) := ∂

∂x
d (x, t) and b′

x
(x, t) :=

∂
∂x
b (x, t) exist. The unknown solution is: x = x(t) ∈ D ⊂ R

m, t ∈ I ⊂ R.
Now recall, a projector Q : Rm → R

m is an operator such that Q2 = Q.
For our later investigations we deal with a smaller class of DAEs with a
so-called properly stated leading term.

Definition 3.1 ([15]). The DAE (14) has a properly stated leading term if

KerA⊕ Imd′

x
(x, t) = R

n for all x ∈ D, t ∈ I,

and if there is a representing projector R ∈ C1 (I, R
n), which satisfies:

KerA = KerR (t), Imd′

x
(x, t) = ImR (t) and d (x, t) = R (t)d (x, t) for all

x ∈ D and t ∈ I.

For the index definition, we need

Definition 3.2 (Matrix Chain and Subspaces). Given the DAE (14), we
define recursively the following objects:

G0 (x, t) := Ad′

x
(x, t) ,

N0 (x, t) := KerG0 (x, t) ,

P0 (x, t) := I−Q0 (x, t) , Q0 (x, t) projector onto N0 (x, t) ,

S0 (x, t) := {z ∈ R
m |b′

x
(x, t) z ∈ ImG0 (x, t)} ,

G1 (x, t) := G0 (x, t) + b′

x
(x, t)Q0 (x, t) ,

N1 (x, t) := KerG1 (x, t)

S1 (x, t) := {z ∈ R
m |b′

x
(x, t)P0 (x, t) z ∈ ImG1 (x, t)} .

Definition 3.3 ([15]). The DAE (14) with a properly stated leading term is
called DAE of (tractability) index-0 if

N0 (x, t) = {0} for all x ∈ D, t ∈ I

or otherwise it is called of index-1 if

(N0 ∩ S0) (x, t) = {0} for all x ∈ D, t ∈ I
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or it is called of index-2 if

(N0 ∩ S0) (x, t) = constant and (N1 ∩ S1) (x, t) = {0} for all x ∈ D, t ∈ I.

Solving a DAE with a properly stated leading term is advantageous es-
pecially in index-1 and index-2 cases:

Remark 3.4. Often DAEs are not given with a properly stated leading
term, and not all DAEs can be formulated as such. If possible, it is worth to
formulate the properly stated leading term, because

• the leading term d (x, t) figures out precisely which derivatives are ac-
tually involved and

• for a large class of index-1 and index-2 DAEs it can be shown that BDF
and Runge-Kutta methods are stability preserving methods [12, 13].

For electric circuits we refer to some standard results:

Remark 3.5. DAEs arising from MNA (and nodal analysis) with merely
basic elements can always be formulated with a properly stated leading term
[16] and the index does not exceed two, under the strictly passivity assump-
tion [7]. More precisely, the MNA equations are of index-2 if and only if there
are LI-cutsets (cutsets consisting of inductances and current sources only) or
CV-loops (loops consisting of capacitances and voltage sources only) with at
least one voltage source.

Rewriting the coupled problem (13) in the abstract form of (14) with properly
stated leading term gives




AC 0 0
0 I 0
0 0 0
0 0 M



d

dt



A+

CACqC (·)
ΦL (·)
M+M⌢a




+




ARgR (·) +ALjL +AVjV +AMX
⊤K(·)⌢a +AIis(t)

−A⊤

Le

A⊤

Ve − vs(t)
K(·)⌢a −MXA⊤

Me


 = 0.

(15)

and unknown x := [e, jL, jV,
⌢a].
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Now, let QM be a constant projector onto KerM, such that QM = Q⊤

M.
Then for PM = I−QM holds PM = M+M, where ’+’ indicates the (Moore-
Penrose) pseudo-inverse [8]. In fact, the DAE (15) has a properly stated
leading term with representing projector

R :=



A+

CAC 0 0
0 I 0
0 0 M+M


 .

Remark 3.6 (Regularity). From Ass. 2.6 follows

Ker
(
M+Q⊤

Mk
′

a(·)QM

)
= {0}.

The following property is clear from the construction of the distribution
matrix and for other constructions it can easily be enforced:

Assumption 3.7 (Soundness of Excitation). The distribution matrix X

applies excitations only in conductive domains, i.e.,

X = PMX.

3.2. Index Investigation

For an index-0 result we need to inspect

G0 (x, t) = Ad′

x
(x, t) =




ACC (·)A⊤

C 0 0 0
0 L (·) 0 0
0 0 0 0
0 0 0 M


 .

Theorem 3.8 (Index-0). Let Ass. 2.3, 2.4 and Ass. 2.6 be fulfilled. Then
the DAE (15) has index-0 if and only if there is a tree containing capacitors
only but no MQS device and no voltage source.

Proof. We have to check that G0 (x, t) is nonsingular. Noticing its block
structure:

G0(x, t) =

[
E(·) 0
0 M

]

with the classical electric network components E (first three columns and
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rows), we realize that regularity of G0 is composed by (i) the usual regularity
of E and (ii) regularity of M.

(i) Standard case [7]. The proof is given for completeness: Since C and
L are positive definite the matrix G0 is nonsingular if and only if the
zero rows and columns disappear and KerA⊤

C = {0}. The null space of
KerA⊤

C is trivial if and only if the circuit has a tree containing capaci-
tors only, see Remark 2.2. The block zero row and column disappears
if and only if there is no voltage source in the circuit.

(ii) Lastly, KerM = {0} if and only if there is no MQS device.

Remark 3.9. (i) Obviously, if there is no MQS device, than we have
the classical network case. Moreover, if there is a MQS device, then
KerM 6= {0}, i.e., the index is larger than zero.

(ii) Certainly, Theorem 3.8 can be extended to include MQS devices that
consist of conducting materials only, i.e, KerM = {0}. This particular
case will not be discussed further on.

For the next step we need

Q0 =




QC 0 0 0
0 0 0 0
0 0 I 0
0 0 0 QM


, b′

x (x, t) =




ARG (·)A⊤

R AL AV AMX
⊤k′

a(·)
−A⊤

L 0 0 0
A⊤

V 0 0 0
−MXA⊤

M 0 0 k′

a(·)


,

and

b′

x (x, t)Q0 =




ARG (·)A⊤

RQC 0 AV AMX
⊤k′

a(·)QM

−A⊤

LQC 0 0 0
A⊤

VQC 0 0 0
−MXA⊤

MQC 0 0 k′

a(·)QM


,

where Q0, QC and QM are constant projectors onto KerG0 (x, t), KerA⊤

C

and KerM, respectively. Consequently, also Q0 and b′

x (x, t) are composed
of a “classical” 3× 3 block in the sense of [7] and a fourth block row/column
that result from the coupling to the MQS device. The index-1 proof is a
straight forward extension of [7].
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Theorem 3.10 (Index-1). Ass. 2.3, 2.4 and Ass. 2.6 hold true and there is
a MQS device, a voltage source or no tree containing capacitors only. The
DAE (15) has index-1 if and only if there is neither a LIM-cutset (cutsets
consisting of inductances, current sources and MQS devices only) nor a CV -
loop with at least one voltage source.

Proof. We need to compute (N0 ∩ S0) (x, t). Let W0 (x, t) be a projector
along ImG0 (x, t); hence W⊤

0 (x, t) is a projector onto KerG⊤

0 (x, t). Since
KerG⊤

0 (x, t) = KerG0 (x, t) holds, we can choose W⊤

0 (x, t) = Q0. For S0

we find:

S0 (x, t) = {z ∈ R
m |b′

x
(x, t) z ∈ ImG0 (x, t)}

= {z ∈ R
m |W0 (x, t)b

′

x
(x, t) z = 0}

= (W0b
′

x) (x, t) .

This gives using also the projector Q0

(N0 ∩ S0) (x, t) = KerG0 (x, t) ∩Ker (W0b
′

x) (x, t)

= ImQ0 ∩KerW0b
′

x (x, t)Q0.

Let z = [z1 z2 z3 z4]
⊤ ∈ (N0 ∩ S0) (x, t). Then (a) Q0z = z and (b)

W0b
′

x (x, t)Q0z = 0. We first treat the magnetic part z4: For (a), the
block diagonal structure of Q0 gives z4 = QMz4. For (b), we inspect

W0b
′

x (x, t)Q0=




Q⊤

CARG (·)A⊤

RQC 0 Q⊤

CAV Q⊤

CAMX
⊤k′

a(·)QM

0 0 0 0
A⊤

VQC 0 0 0
0 0 0 Q⊤

Mk
′

a(·)QM


, (16)

and find QMz4 = 0, since Q⊤

MM = 0 and the last block row of (16) gives

Q⊤

M

(
M+ k′

a(·)
)
QMz4 = 0,

with M+ k′

a(·) positive definite by Ass. 2.6. Hence (a) and (b) imply

z4 = 0. (17)
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Thus we have

(N0 ∩ S0) (x, t) =
(
Im (Q0)

E ∩Ker (W0b
′

x (x, t)Q0)
E
)
× {0},

where superscript E denoting the standard circuit block (first three rows and
first three columns). Now, from standard circuit results [7], we know

z1 ∈ Ker [ACAR AV]
⊤
, z2 = 0, and Q⊤

CAVz3 = 0. (18)

Finally from (17-18) we obtain: (N0 ∩ S0) (x, t) = {0} holds if and only if
there is neither a LIM-cutset (Remark 2.2) nor a CV -loop (Remark 2.2)
with at least one voltage source.

Remark 3.11. For completeness, we give the standard reasoning for the
circuit contribution (18): Using z4 = 0, z ∈ ImQ0 implies

QCz1 = z1, (19)

z2 = 0,

and z ∈ KerW0b
′

x (x, t)Q0 implies

Q⊤

CARG (·)A⊤

RQCz1 +Q⊤

CAVz3 = 0, (20)

A⊤

VQCz1 = 0. (21)

Left-multiplying (20) by z⊤1 and using (21), we conclude that z1 ∈ KerA⊤

RQC

and thus Q⊤

CAVz3 = 0. Now, using (19), we find indeed (18).

We introduce the constant projector QCRV onto Ker [AC AR AV]
⊤ with

QCRV = QCQV–CQR–CV where QC–V, QV-C and QR–CV are constant projec-
tors onto KerQ⊤

CAV, KerA⊤

VQC and KerA⊤

RQCQV–C, respectively, see [7].
With these new projectors we directly obtain:

Lemma 3.12. The intersection (N0 ∩ S0) (x, t) can be described by

(N0 ∩ S0) (x, t) = {z ∈ R
n | z1 ∈ ImQCRV, z3 ∈ ImQC–V, [z2 z4] = 0}.

Thus, the dimension of (N0 ∩ S0) (x, t) is constant.

Notice, the constant dimension is important for the index-2 case.
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Remark 3.13. Let Q, B and B+ denote a projector, a matrix and its
(Moore-Penrose) pseudo-inverse, respectively. If B = Q⊤BQ then follows
B+ = QB+Q⊤.

Lemma 3.14 (Consistent Excitation). Let Ass. 2.6 and Ass. 3.7 be fulfilled,
then

X⊤Hk (·)X with Hk (·) := k′

a(·)
(
k′

a(·)
+ −

(
Q⊤

Mk
′

a(·)QM

)+)
k′

a(·)

is positive definite.

Proof. A straight forward computation using the soundness of the excitation
(Ass. 3.7), properties of the projector and pseudo-inverse (Remark 3.13) and
the divergence-freeness of the excitation (9), i.e., S̃MX = 0 yields

X⊤Hk (·)X = X⊤TZk (·)T
⊤X

with a fully regularized curl-curl matrix Zk (·) := k′

a(·) +M⊤S̃⊤S̃M and the
block-elimination T (·) := I− (P⊤

MZk (·)QM)(Q
⊤

MZk (·)QM)
+.

The matrix T (·) is regular with T−1 (·) = I+(P⊤

MZk (·)QM)(Q
⊤

MZk (·)QM)
+

andX has full column rank by construction. Thus the positive definiteness of
Zk (·) must be shown, where the only interesting elements are from kerC =
im S̃⊤ due to the structure of k′

a (7). This gives:

x⊤S̃
(
Y +M⊤S̃⊤S̃M

)
S̃⊤x > 0 for all x 6= 0

with Y as defined in Ass. 2.6. Positive definiteness follows in both cases

1. if S̃⊤x ∈ kerM then there is a y such that S̃⊤x = QMy. Thus the
second summand vanishes and the first summand is positive because
of Ass. 2.6.

2. else MS̃⊤x 6= 0 and thus the second summand is positive (because its
kernel is kerMS̃⊤) and the first summand is non-negative.

Remark 3.15. In 2D the curl-curl operator equals the Laplacian, [11].
Therefore the corresponding curl-curl matrix is positive definite and thus
Lemma 3.14 holds for 2D models without Ass. 2.6 (i.e., without gauging).
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Next, for index-2 we compute G1 (x, t) = G0 (x, t)+b′

x (x, t)Q0 from the
matrix chain:

G1 (x, t) =




ACC (·)A⊤

C +ARG (·)A⊤

RQC 0 AV AMX
⊤k′

a(·)QM

−A⊤

LQC L (·) 0 0
A⊤

VQC 0 0 0
−MXA⊤

MQC 0 0 M+ k′

a(·)QM


 .

In contrast to [7], we will not calculate a projector Q1 onto KerG1 (x, t) to
prove the following theorem.

Theorem 3.16 (Index-2). Let the Assumptions 2.3, 2.4, 2.6 and 3.7 hold
true and there is at least one MQS device, voltage source or no tree containing
capacitors only. Then the DAE (15) has index-2 if and only if there is a
LIM-cutset or a CV-loop with at least one voltage source.

Proof. We show that (N1 ∩ S1) (x, t) is trivial. We choose W1 (x, t) as

W1 (x, t) =




Q⊤

CRV 0 0 −Q⊤

CRVAMX
⊤k′

a(·)
(
Q⊤

Mk
′

a(·)QM

)+
0 0 0 0
0 0 Q⊤

C–V 0
0 0 0 0




where
(
Q⊤

Mk
′

a(·)QM

)+
= QM

(
Q⊤

Mk
′

a(·)QM

)+
Q⊤

M (see Remark 3.13) and
W1 (x, t) is a projector with ImG1 (x, t) ⊂ KerW1 (x, t). We have

S1 (x, t) = {z ∈ R
n |b′

x (x, t)P0z ∈ ImG1 (x, t)}

⊂ {z ∈ R
n |W1 (x, t)b

′

x (x, t)P0z = 0} =: S̃1 (x, t)

and we will show that even
(
N1 ∩ S̃1

)
(x, t) is trivial; since S1 (x, t) ⊂

S̃1 (x, t) holds, we obtain the desired result. To this end, we compute

W1 (x, t)b
′

x (x, t)P0 =




0 Q⊤

CRVAL 0 Q⊤

CRVAMX
⊤Hk (·)PM

0 0 0 0
Q⊤

C–VA
⊤

VPC 0 0 0
0 0 0 0


 ,

with Hk (·) = k′

a(·)
(
k′

a(·)
+ −

(
Q⊤

Mk
′

a(·)QM

)+)
k′

a(·). Now, from the equa-
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tion (W1b
′

x) (x, t)P0z = 0 follows

Q⊤

CRVALz2 +Q⊤

CRVAMX
⊤Hk (·)PMz4 = 0, (22)

Q⊤

C–VA
⊤

VPCz1 = 0, (23)

and G1 (x, t) z = 0 gives

(
ACC (·)A⊤

C +ARG (·)A⊤

RQC

)
z1 +AVz3 +AMX

⊤k′

a(·)QMz4 = 0, (24)

z2 − L−1 (·)A⊤

LQCz1 = 0, (25)

A⊤

VQCz1 = 0 (26)

−MXA⊤

MQCz1 + (M+ k′

a(·)QM) z4 = 0. (27)

Left-multiplying (27) by (QMz4)
⊤, we obtain

QMz4 = 0, that is, z4 = PMz4, (28)

because M+ k′

a(·) is positive definite by Ass. 2.6.
From (27) with PM = M+M and z4 = PMz4, we can conclude that

z4 = XA⊤

MQCz1, (29)

since it holds X = PMX using Ass. 3.7. Multiplying (24) from left by
(QCz1)

⊤, using both (26) and (28), we obtain

QCz1 ∈ KerA⊤

R. (30)

Putting (25),(30) and the definition of QC together, we have

QCz1 ∈ Ker [ACAR AV]
⊤ = ImQCRV

that is, QCz1 = QCRVQCz1. Inserting (25) and (29) into (22) gives

Q⊤

CRVALL
−1 (·)A⊤

LQCz1 +Q⊤

CRVAMX
⊤Hk (·)XA⊤

MQCz1 = 0

whereX⊤Hk (·)X is positive definite due to Lemma 3.14. Therefore it follows
that A⊤

LQCz1 = 0 and A⊤

MQCz1 = 0 (using QCz1 = QCRVQCz1). Hence
QCz1 ∈ Ker [ACARAL AV AM]

⊤, which is trivial due to Ass. 2.4.
Thus we find QCz1 = 0, in other words, PCz1 = z1. From (25) we deduce
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z2 = 0. Using this, (24) can be written as

HC (·)PCz1 = −AVz3,

where HC (·) = ACC (·)A⊤

C +Q⊤

CQC is positive definite. Thus

z1 = −HC (·)−1
AVz3.

Multiplying (24) from left by Q⊤

C leads to Q⊤

CAVz3 = 0 and z3 ∈ ImQC–V

respectively. Together with (23) and z3 ∈ ImQC–V this gives

Q⊤

C-VA
⊤

VHC (·)−1
AVQC–Vz3 = 0.

Hence we can conclude AVz3 = 0 and from this we have z3 = 0, since
AV has full column rank. Consequently from HC (·) z1 = 0 follows z1 = 0.

Hence
(
N1 ∩ S̃1

)
(x, t) and (N1 ∩ S1) (x, t) are trivial if an only if there is a

LIM-cutset or a CV -loop with at least one voltage source.

Remark 3.17 (Flux/charge MNA). Notice flux/charge oriented MNA, [7]
or the introduction of jM as an additional unknown of our coupled problem
(cf. Section 2.3) do not change our index-1 and index-2 results.

Corollary 3.18 (Linear index-2). The index-2 variables are those compo-
nents that depend on first derivatives of the input functions. In our case
they can be described by Tx, [6], where T is a constant projector onto
(N0 ∩ S0) (x, t) with

T =




QCRV 0 0 0
0 0 0 0
0 0 QC–V 0
0 0 0 0


 .

Then we can write in the general DAE (14): b (x, t) = b (Ux, t) +BTx for
a problem given matrix B and d (x, t) = d (Ux, t) with U = I − T. Thus
index-2 variables enter our system linearly.
Using perturbation-index analysis, it has been shown for index-2 Hessen-
berg systems with linear index-2 variables, [1], and for index-2 circuits, [21],
that the numerical difficulties in time-integration are moderate, because the
differential (index-0) variables are not affected by numerical differentiations.
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Remark 3.19 (Consistent initialization). To solve a DAE numerically, it is
important to start with a consistent initial value because we can not choose
initial values arbitrarily as in case of an ordinary differential equation [10, 6,
16]. Consistent initial values are obtained by standard techniques that require
in the index-1 case the solution of a system of nonlinear equations [16]. In the
case of an index-2 DAE, the calculation of an consistent initialization becomes
more complicated. At least for DAEs with linear index-2 components we can
obtain a consistent value after one (implicit) Euler integration step starting
from an operation point [6].

4. Numerical Example

We will prove the numerical importance of the index results by discussing
two simple examples that illustrate the different behavior of the index-1 and
index-2 cases. The most simple problems are the following, see Fig. 2,

(a) a circuit with no devices but a voltage source and a one-port MQS
device (AV = [1] and AM = [−1]) states an index-1 problem (see
Fig. 2a),

(b) a circuit with no devices but a current source and a one-port MQS de-
vice (AI = [1] and AM = [−1]) states an index-2 problem (see Fig. 2b).

The tractability indices of those particular problems agree with the Kronecker
index and differentiation index results in [19, 23].

The simplest one-port MQS device is a (linear) inductor without eddy
currents. Fig. 2c shows the 2D model of such a coil with an ’EI’-core.1 It is
spatially discretized by FEMM, [17] . In this simple linear setup the PDE
model is equivalent to a series connection of a lumped resistance R and an
inductance L, [14]. Hence, for this simple problem, we have the analytic
solution of the voltages and currents of the coupled DAE problem at hand:
in the index-2 setting, cf. Fig. 2b, with a sinusoidal current source

is(t) = sin(2πft), with a frequency f = 50Hz,

1details are given at http://www.femm.info/wiki/InductanceExample
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vs(t)
MQS
device

(a) Index-1 problem.

is(t)
MQS
device

(b) Index-2 problem.
(c) MQS device.

Figure 2: Examples. a) voltage-driven MQS device is index-1, b) current-driven MQS
device is index-2, c) 2D ’EI’-inductor model discretized by FEMM [17]: rotational symetric
(− · −), coupled to the circuit via its coil (white), ’EI’-core (grey), air (black).

the voltage drop (at the RL-element) is analytically given by

vM = A⊤

Me = A⊤

M

(
Ris(t) + L

d

dt
is(t)

)

= −R sin(2πft)− 2πfL cos(2πft).

In the index-1 case, cf. Fig. 2a, a voltage source is connected to the MQS
device, i.e., vM(t) = vs(t) and iL(t) = is(t).

The following simulations were carried out by the implicit Euler scheme
applied to the respective coupled system and results are compared to the an-
alytical reference solution given above. Higher-Order time-integration meth-
ods could be applied analogously, but would not give further inside. Fig. 3
shows the numerical error due to time-integration for fixed time step sizes
h = 10−11s, . . ., 10−6s. Although both, the index-1 and index-2 circuits
describe the same physical phenomenon, the error behaves differently: in
the index-1 case, Fig. 3a, the relative error decreases with the step size as
one would expect. It oscillates for the smallest step size h = 10−11s, where
errors are near to machine precision. On the other hand, in the index-2
case Fig. 3b, the numerical error is highly oscillating for step sizes below
h = 10−8s. Moreover, below h = 10−8 the error increases for decreasing step
size. Nonetheless those errors are not propagated in time because they do
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(a) relative error in current (index-1)
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(b) relative error in voltage (index-2)

Figure 3: Numerical Errors for a) the index-1 problem (voltage driven) and b) the index-2
problem (current driven)

not affect the differential components, see Cor. 3.18. Only when using a step
size control, one has to take special care, i.e, exclude the index-2 voltages
from the set of variables that are monitored, such that the oscillations do not
require unreasonable step sizes.

A similar error characteristics can be observed in simulations where the
PDE model is substituted by a lumped inductance model. This underlines
that the device is topologically equivalent to an inductance.

5. Conclusion

We have modeled a network of lumped resistors, inductors, capacitors,
independent current and voltage sources, and spatially distributed MQS de-
vices by applying MNA. Starting from spatially discretized MQS devices, we
have deduced a coupled system of DAEs with properly stated leading term.
Then the structural properties of this system have been analyzed: We have
proven that the index does not exceed two under certain conditions. Thereby
the proofs for index-0 and index-1 extend the known electric circuit technique
by the treatment of MQS devices variables and equations. For the index-2
case, the consistency of the MQS device excitation is a crucial first step and
our proof is not based on the explicit computation of the respective projector.
Thus we have generalized the topological index criteria of electrical circuits.
A simple numerical example illustrated the findings and demonstrated that
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the coupled simulation does not suffer from error propagation in the index-2
variables due to linear dependence of corresponding variables.

Although the MQS devices are modeled as controlled current sources, our
structural analysis shows that they behave topologically as inductances. This
corresponds to the physical effects covered by the eddy current problem.
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