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GEOMETRIC MULTIGRID FOR THE TIGHT-BINDING
HAMILTONIAN OF GRAPHENE

KARSTEN KAHL∗ AND NILS KINTSCHER∗

Abstract. In order to calculate the electronic properties of graphene structures a tight-binding
approach can be used. The tight-binding formulation leads to linear systems of equations which are
maximally indefinite and can be seen both as a discretization of a system of PDEs or a staggered
discretization. In this paper we develop a geometric multigrid method for this problem and undertake
a complete two-level convergence analysis using local Fourier analysis. In numerical tests we show
the scalability of the resulting multigrid method with respect to various geometric parameters.

Key words. geometric multigrid, indefinite operators, local Fourier analysis, staggered trian-
gular grid, honeycomb lattice, tight-binding Hamiltonian, Graphene
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1. Introduction. In this paper we construct a well behaving geometric multigrid
algorithm for a maximally indefinite (and for certain geometries even singular) linear
system of equations. By using local Fourier analysis (LFA) we prove the convergence
of the two-grid method.

The maximally indefinite system arises from the tight-binding approach for elec-
tronic structure calculations of graphene [10, 11, 19], which plays a key-role in com-
putationally demanding simulations, such as Monte-Carlo studies [9, 22]. Herein, the
indefinite operator is formulated on a honeycomb lattice which can be interpreted as
a staggered triangular lattice.

Multigrid methods for indefinite problems have been considered mainly in the
the context of the indefinite Helmholtz equation or other 2nd order elliptic boundary
value problems. Typically, convergence of a multigrid method for these problems
can only be guaranteed if particular conditions are fulfilled; cf. [1, 2, 5, 6, 20, 23].
The most prominent restriction oftentimes requires that the coarsest grid needs to
be sufficiently fine/large. This means that there is no such method with the typical
multigrid advantage—an asymptotic convergence rate independent of the grid size.
Recently, in the context of Lattice Gauge Theory algebraic multigrid methods have
experimentally been shown to be efficient for indefinite spin systems in [12, 16, 18].
However no theoretical proof of convergence is available for these methods.

LFA was introduced in [7, 8] and is known as a powerful tool for the convergence
analysis of multigrid methods. A comprehensive introduction to LFA on rectangular
grids can be found in [21]. The concept has been further developed to other triangular
and hexagonal grids in [13, 24] and to systems of PDEs, e.g. curl-curl and Navier-
Stokes, in [4, 17, 21]. In the LFA for the curl-curl equation, the PDE is discretized
by first order edge elements on a regular quadrilateral grid such that the unknowns
correspond to the edges of the grid. Since the edges in vertical direction are different
from the edges in horizontal direction, the system and the LFA is treated as a staggered
rectangular lattice which is very similar to the case discussed in here.

The remainder of this paper is organized as follows. First, we give an introduction
about the geometric structure of graphene and the geometry of the graphene patches
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which are considered in this paper. Then we introduce the tight-binding Hamiltonian
of graphene in its most general form and show how the spectrum of this operator
can be extracted analytically. Afterwards, we sketch roughly the concept of multigrid
methods and explain our construction in detail. At this point, the previously obtained
spectral information of the operator is of crucial importance. The LFA which proves
the convergence for the complete two-grid method is given right after. In the last
section, numerical results are presented and compared to the results of the LFA.
These results show the scalability of the twogrid and multigrid method with respect
to several geometric parameters.

2. Graphene. Carbon materials occur in many different allotropes. Besides the
well-known forms of graphite and diamond, reseachers recently isolated graphene, a
single layer of carbon atoms bonded in a hexagonal or ”honeycomb” structure. The
distance a of two neighboring carbon atoms in graphene is approximately 1.42Å.
Graphene is the basic element of fullerenes, which are molecules of carbons in the
form of a sphere (Buckminsterfullerene C60), tubes (carbon nanotubes) and many
other shapes [10, 14]. In this paper we restrict ourselves to rectangular graphene
sheets with different boundary conditions, which means we are dealing with sheets,
tubes and tori. In order to describe these geometries in more detail, we first introduce
notation for lattice structures and show how the hexagonal structure of graphene can
be viewed as a triangular lattice with two atoms per lattice site.

Definition 1. A 2-dimensional lattice generated by the vectors a1, a2 ∈ R2 is
given by

L := {x ∈ R2 | x = z1a1 + z2a2, z1, z2 ∈ Z}.

While the hexagonal structure of graphene is not a lattice per se it can be inter-
preted as a triangular lattice LT of pairs of atoms generated by the vectors

(1) a1 = (
3a

2
,

√
3a

2
), a2 = (

3a

2
,−
√
3a

2
)

as illustrated in Figure 1. The graphene lattice is then given by the set of points

(2) LG := {x+ δτ, x ∈ LT , δ ∈ {0, 1}}

with τ := (a, 0). To distinguish the points we denote x ∈ LT by type A and x ∈ LG\LT

by type B.
Definition 2. Define a rectangular graphene patch Gn,m,` with n,m, ` ∈ N by

Gn,m,` := LG ∩R,

where R := {x ∈ R2 : x = α1C + α2T, αi ∈ (0, 1]}. In here the boundary vectors of
the confining rectangle R are given by

C = na1 +ma2 and T = `

(
2m+ n

Nr
a1 −

2n+m

Nr
a2

)
,

where Nr = gcd(2n+m, 2m+n)1. Its chiral angle is given by θ = −π
6 + tan−1(

√
3m

m+2n ).
One easily checks that T is indeed orthogonal to C; cf. Figure 2.

1gcd(a, b) is the greatest common divisor of a, b ∈ N
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Figure 1: graphene interpreted as a triangular lattice LT ( A, B ).

Remark 3. Due to symmetries of the graphene lattice all possible rectangular
patches Gn,m,` are defined by

n,m, ` ∈ N \ 0 and n ≥ m,

which restricts the chiral angle to 0◦ ≤ θ < 30◦.
• For n = m (θ = 0◦), we obtain an armchair boundary in the direction of C

and a zigzag boundary in the direction of T , as illustrated by the horizontal
and vertical boundary in Figure 2.

• The number of atoms in Gn,m,` is (cf. [11])

(3) |Gn,m,`| = 2
|C × T |
|a1 × a2|

=
4`(n2 + nm+m2)

Nr
,

where × denotes the vector product operator.
Carbon nanotubes are obtained from Gn,m,` by rolling it up along C such that

x ∈ Gn,m,` is identified with x+ C; cf. Figure 3.
Tight-binding Hamiltonian. In order to calculate the electronic band structure

of graphene a tight-binding Hamiltonian approach is used which considers electrons
hopping between lattice points with a hopping energy that decreases exponentially
with distance. Due to the exponential decay of the hopping energy good approxima-
tions are already achieved by considering only couplings to the nearest, next-nearest
and next-to-next nearest neighbors. To fix the notation for such an operator we use
the concept of level sets.

Definition 4. Let X = {1, 2, . . .} denote all lattice sites and xi ∈ R2 the coor-
dinate of the ith lattice site. Then level sets Gi

j 6= ∅ with respect to lattice site i are
defined by

(i) x, y ∈ Gi
j =⇒ ‖xi − x‖2 = ‖xi − y‖2

(ii) j < k ⇐⇒ ‖xi − y‖2 < ‖xi − z‖2, for all y ∈ Gi
j , z ∈ Gi

k.

In Figure 4 the level sets Gi
0, G

i
1, G

i
2 and Gi

3 are shown on the hexagonal structure.
With the definition of level sets in place, the tight-binding Hamiltonian operator with
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θC

T

Figure 2: G4,2,1, zigzag armchair boundary

T

Figure 3: Nanotube G4,2,1

ccc

Figure 4: The first four level sets
G0, G1, G2 and G3

K2

K1

b1

b1

Figure 5: 1st Brillouin zone, DG

hopping energies t0, t1, . . . , tM is defined by

(4) (A[t0,t1,t2,...,tM ]x)i =

M∑
j=0

tj
∑
`∈Gi

j

x`, for all i ∈ X.

Values [t0, t1, . . .] for the hopping energies found in the literature [19] are approx-
imately [0,−2.7, 0, 0, . . .]eV ([−.36,−2.78,−.12,−.068]eV ) in the nearest neighbor
(third nearest neighbor) description.

Spectral properties. In the spectral analysis of operators on lattices the reciprocal
lattice plays an important role. It has a direct relation to the Fourier transform on
the lattice.
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Definition 5. Let L be a 2-dimensional lattice generated by the vectors a1 and
a2. Then its reciprocal lattice is defined by vectors b1 and b2 such that

〈bi, aj〉2 = 2π · δij .

The reciprocal lattice of LT is defined by the basis vectors

b1 =
2π

3a

(
1,
√
3
)
, b2 =

2π

3a

(
1,−
√
3
)
.

For a local Fourier analysis it is sufficient to consider a finite area of the reciprocal
lattice due to the periodicity of the Fourier modes, i.e.,

ei〈k1b1+k2b2,x〉2 = 1, k1, k2 ∈ Z2, x ∈ LT .

For example the paralellogram DG spanned by the vectors b1 and b2, i.e.,

DG = {k1b1 + k2b2, 0 ≤ k1, k2 < 1} .

In the context of solid state physics, it is more common to consider the first Brillouin
zone, also known as the Wigner-Seitz cell or Voronoi cell of the reciprocal lattice,
illustrated in Figure 5.

The spectrum of a locally defined operator on an infinite lattice can be computed
using Bloch’s theorem [3], which states that the eigenfunctions of an operator defined
on a lattice are given by

Ψ(k, x) = ei〈k,x〉2u(x),

where k = k1b1 + k2b2, 0 ≤ k1, k2 < 1, x ∈ L and u(x) is periodic on L, i.e., u(x +
z1a1 + z2a2) = u(x), z1, z2 ∈ Z. With respect to the tight binding Hamiltonian of
graphene we thus find the following description of its spectrum on an infinite lattice
(shown in Figure 6).

Theorem 6. The eigenvalues of A[0,t1] are given by

(5) E(k) = ±t1
√
3 + 2 cos(〈k, a1〉2) + 2 cos(〈k, a2〉2) + 2 cos(〈k, a2 − a1〉2),

with corresponding eigenfunctions

Ψ̂(k, x) = α
(1)
k

(
Ψ(k, x)

Ψ(k, x+ τ)

)
+ α

(2)
k

(
Ψ(k, x)

−Ψ(k, x+ τ)

)
,

where Ψ(k, x) = ei〈k,x〉2 , k ∈ DG and x ∈ LT .
Proof. We have

A[0,t1]

(
Ψ(k, x)

±Ψ(k, x+ τ)

)
= t1

(
Ψ(k, x+ τ) + Ψ(k, x− a1 + τ) + Ψ(k, x− a2 + τ)
± [Ψ(k, x) + Ψ(k, x+ a1) + Ψ(k, x+ a2)]

)
= t1

(
(1 + e−i〈k,a1〉2 + e−i〈k,a2〉2)Ψ(k, x+ τ)
±(1 + ei〈k,a1〉2 + ei〈k,a2〉2)Ψ(k, x)

)
.

Thus we obtain the eigenvalues of the tight-binding Hamiltonian by diagonalizing the
hermitian 2× 2 matrix

(6)
(

0 1 + ei〈k,a1〉2 + ei〈k,a2〉2

1 + e−i〈k,a1〉2 + e−i〈k,a2〉2 0

)
.

5
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Remark 7. The zeroes of E(k) from (5) are called Dirac points [10]. The two
Dirac points in DG are given by

K1 =
1

3
b1 +

2

3
b2 and K2 =

2

3
b1 +

1

3
b2,

which can easily be checked by analyzing the real and imaginary part of the entries in
(6) seperately.

A corresponding basis of the kernel is then given by

(7)
(

ei〈K1,x〉2

ei〈K1,x+τ〉2

)
,

(
ei〈K1,x〉2

−ei〈K1,x+τ〉2

)
,

(
ei〈K2,x〉2

ei〈K2,x+τ〉2

)
and

(
ei〈K2,x〉2

−ei〈K2,x+τ〉2

)
, x ∈ LT .

Note, that the points Ki− δ(bj + γbi), i, j = 1, 2, δ, γ = 0, 1 are the six vertices of the
first Brillouin zone as illustrated in Figure 5.

The remainder of the paper deals with the treatment of the tight-binding Hamil-
tonian on finite sections of the graphene lattice. Typical boundary conditions for the
rectangular graphene sheets Gn,m,` are open and periodic. Open boundary condi-
tions are realized by simply omitting the terms of the operator which would belong
to off-lattice points in (4). Periodic boundary conditions are defined by translation
equalities of the kind

(8) x+ C = x and x+ T = x for all x ∈ Gn,m,`.

Lemma 8. The eigenvalues of the tight-binding Hamiltonian A[0,t1] on a periodic
rectangular graphene sheet Gn,m,` are given by

E(k) = ±t1
√
3 + 2 cos(〈k, a1〉2) + 2 cos(〈k, a2〉2) + 2 cos(〈k, a2 − a1〉2),

where k is restricted to the discrete set Λn,m,` ∩ DG with

Λn,m,` :=

{
1

2(n2 + nm+m2)
(z1â1 + z2â2), z1, z2 ∈ Z

}
where the basis vectors are given by

â1 =
n ·Nr

`
b1 −

m ·Nr

`
b2 and â2 = (2m+ n)b1 + (2n+m)b2.

Thus K1,K2 ∈ Λn,m,` iff

(n−m) mod 3 = 0, ` ·m mod Nr = 0, ` · n mod Nr = 0.

Proof. Using the identity translations (8) one can show that the eigenfunctions
with k ∈ Λn,m,` are well defined. Further, due to |Gn,m,`| = 2|Λm,n,` ∩ DG| (cf.
(3)) there cannot be any other eigenfunctions. The statement about the Dirac points
K1,K2 is a direct consequence.

Remark 9. Both Theorem 6 and Lemma 8 can be generalized to arbitrary tight-
binding Hamiltonians A[t0,t1,t2,...,tM ]. Using the specified lattice Fourier modes the
operator is again block diagonalized into 2× 2 blocks.
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2π
3

4π
3

− 2π√
3

− π√
3

π√
3

2π√
3

−3

−2

−1

0

1

2

3

K1

K2

K1

K2

b2

b1

0

1

2

3

Figure 6: Spectrum of A[0,−1], i.e., E(k), k ∈ DG

K1

K2

b2

b1

K1

K2

b2

b1

K1

K2

b2

b1

0

1

2

3

Figure 7: Discrete spectrum Λn,m,` of A[0,−1] for different choices of (n,m, `). Left
(3, 3, 3), middle (4, 2, 1), right (6, 0, 3).

3. Multigrid. Multigrid methods are iterative solvers for linear systems of equa-
tions Ax = b, A ∈ Rn×n that exploit the geometric structure of the problem, such
that in contrast to other iterative methods a convergence rate independent of the mesh
size can be achieved. A multigrid method relies on the efficient interplay between a
smoother, S, which typically is a simple stationary iterative scheme, and a coarse grid
correction that is able to treat error components untouched by the smoother on a
coarser scale. In order to formulate the coarse grid correction one first has to specify
suitable coarse degrees of freedom. Oftentimes this corresponds to a splitting of the

7
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lattice points LG of the current level into variables which are used on the coarse grid
as well, Lc

G, and the remainder Lf
G. Once the choice of coarse degrees of freedom has

been made, appropriate interpolation and restriction operators need to be defined

P : Rnc → Rn and R : Rn → Rnc ,

where nc denotes the number of coarse degrees of freedom, e.g., nc = |Lc
G|. The coarse

grid correction is then defined by its error propagator

I − P (RAP )
−1

RA,

assuming that RAP is non-singular. In case A is symmetric the restriction R is typi-
cally chosen as PT , which results in a Galerkin coarse grid correction. In Algorithm 1
we give a pseudo-code of the resulting two grid method. The (V -cycle) multigrid
method is obtained by replacing (RAP )−1 by (a single iteration of) yet another two
grid method [21]. Note, that for the recursive applicability of the two grid construc-
tion on the coarse grid problem RAP one has to make sure that key features of A are
preserved.

In what follows we specify the multigrid components for the graphene tight-
binding Hamiltonian in more detail before we analyze the convergence of the resulting
method in section 4.

Algorithm 1 Tentative two grid method

1: Given an initial guess x(0), r(0) = b−Ax(0)

2: for all m = 1, 2, . . . do
3: x(m) = Sν1(A, x(m−1), b) . pre-smooth ν1 times
4: rc = PH(b−Ax(m)) . coarsen the residual
5: Acxc = rc . solve the coarse grid problem
6: x(m) = x(m) + Pxc . interpolate and correct
7: x(m) = Sν2(A, x(m), b) . post-smooth ν2 times
8: end for

Smoother. The smoother for our multigrid method is the Kaczmarz iteration [15],
which can be viewed as the Gauss-Seidel iteration on the normal equations ATAx =
AT b. Given a splitting of ATA into its diagonal and triangular parts

(9) ATA = D + L+ U,

the Kaczmarz iteration can be written as

x← x+ (D + L)−1(AT (b−Ax)).

Note that the Kaczmarz iteration depends on the ordering of the unknowns. In here
we use a lexicographic ordering as depicted in Figure 8. That is, we assume that the
lattice points are numbered from bottom to top and left to right.

Coarse lattice points. We choose the splitting of lattice points LG = Lc
G∪L

f
G into

coarse and fine lattice points in a way that guarantees the recursive applicability of
the coarse grid construction. That is, the set of coarse grid lattice points should again
be a honeycomb lattice.

We achieve this by defining a coarse triangular lattice

Lc
T := {τ + z1 · 2a1 + z2 · 2a2, z1, z2 ∈ Z}.

8



Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t

1
2

3
4

5
6

7

8
9

10
11

12

13
14

15
16

17
18

19

20
21

22
23

24

25
26

27
28

29
30

31

32
33

34
35

36

Figure 8: Lexicographic ordering of the graphene lattice (left) and status of unknowns
within a Kaczmarz iteration (right). Unknowns already updated ; current unknown
to be updated ; remaining unknowns not yet updated .

The corresponding coarse honeycomb lattice Lc
G is then given by

Lc
G := {x+ δ · 2τ, x ∈ Lc

T , δ ∈ {0, 1}}.

The coarse lattice points are identified by having a coarse lattice point located on the
opposite site of any of the adjacent hexagons; cf. Figure 9. Using the same naming
convention as in section 2 for the coarse lattice points, we denote x ∈ Lc

T by type Ac

and x ∈ Lc
G \ Lc

T by type Bc. Thus type Ac (Bc) lattice points are of type B (A) on
the fine lattice.

Defining sublattices

(10) L(ζ1,ζ2)
T := {x+ ζ1a1 + ζ2a2, x ∈ Lc

T },

with L(0,0)
T = Lc

T , the fine lattice can be split into

LT =
⋃

(ζ1,ζ2)∈{0,1}2

L(ζ1,ζ2)
T .

Given this splitting of LT one also obtains a splitting of LG by

(11) L(ζ1,ζ2)
G := {x+ δ2τ, x ∈ L(ζ1,ζ2)

T , δ ∈ {0, 1}}

as illustrated in Figure 10.
Intergrid transfer. Due to the fact that the tight-binding Hamiltonian of graphene

results in a symmetric linear operator we choose to use a Galerkin construction, i.e.,
R = PT , and thus can restrict the discussion to the construction of P . Given a
splitting of the lattice points LG = Lc

G ∪L
f
G, the main idea in the construction of the

interpolation operator
P : Lc

G → LG, P |Lc
G

= I

is the exact preservation of kernel modes of the tight-binding Hamiltonian. That is,
we want the interpolation operator to interpolate the Fourier modes (7) corresponding
to the Dirac points K1,K2 exactly in the following sense

(12)
(

ei〈Kj ,x〉2

±ei〈Kj ,x+τ〉2

)
= P

(
±ei〈Kj ,y〉2

ei〈Kj ,y+2τ〉2

)
, j = 1, 2, x ∈ LT , y ∈ Lc

T .

9
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2a1

2a
2 2τ

Figure 9: Coarse lattice Lc
G ⊂ LG and

coarse lattice vectors of Lc
T .

Figure 10: Splitting of LG into
/ L

(0,0)
G , / L

(0,1)
G , / L

(1,0)
G

and / L
(1,1)
G .

Figure 11: Illustration of interpolation using weights ws and w`.

The problem of preserving these four modes can be reduced to a problem involving
only two by choosing the interpolation points according to the species (either A or
B) of the fine lattice point that is the target of interpolation. That is, a coarse lattice
point of species Ac or Bc interpolates only to fine lattice points of species B or A,
respectively. With this choice the ± term cancels, which halves the number of modes
to fit and thus it only requires the solution of the interpolation problem (12) for either
species A or B.

In addition the interpolation points should consist of coarse lattice points in the
vicinity of the fine lattice point. Even though two interpolation points would be
sufficient to resolve (12) we opt to define four interpolation points for each lattice

10
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point x ∈ LG \ Lc
G as illustrated in Figure 11.

Let x ∈ L(0,1)
G , then interpolation weights w = (ws, w̃s, w`, w̃`)

T are obtained as
solutions of the linear system of equations(

ei〈K1,x+a2〉2 ei〈K1,x−a2〉2 ei〈K1,x+2a1−a2〉2 ei〈K1,x−2a1+a2〉2

ei〈K2,x+a2〉2 ei〈K2,x−a2〉2 ei〈K2,x+2a1−a2〉2 ei〈K2,x−2a1+a2〉2

)
w =

(
ei〈K1,x〉2

ei〈K2,x〉2

)
⇔

(
e2πi2/3 e−2π2/3 e0πi e−0πi

e2πi1/3 e−2πi1/3 e2πi e−2πi

)
w =

(
1
1

)
⇔

(
− 1

2 −
√
3
2 i − 1

2 +
√
3
2 i 1 1

− 1
2 +

√
3
2 i − 1

2 −
√
3
2 i 1 1

)
w =

(
1
1

)
.

By choosing the interpolation weights to points symmetric to the fine lattice point
to be equal, i.e., w̃s = ws and w̃` = w` the linear system of equations results in the
relation

(13) ws = 2w` − 1 .

Note, that due to symmetry this result is independent of the choice of

x ∈ L(ζ1,ζ2)
G , (ζ1, ζ2) ∈ {0, 1}2 \ (0, 0).

We now analyze for which choices of pairs ws, w` fulfilling (13) the multigrid method
converges.

4. Theoretical Analysis. A commonly used tool in the analysis of multigrid
methods on lattices, i.e., regularly structured discretizations which lead to stencil
operators, is the local Fourier analysis (LFA) [21]. By neglecting boundary conditions,
i.e., considering the operator on the infinite lattice

LG := {x+ δτ : x ∈ LT , δ ∈ {0, 1}},

LFA allows us to calculate upper bounds for the convergence rate of the two grid
method. LFA uses the observation that the tight-binding Hamiltonian, which is de-
scribed by a stencil on a lattice, is block-diagonalized by the Fourier modes(

ei〈k,x〉2

±ei〈k,x+τ〉2

)
, k ∈ DG, x ∈ LT

(cf. section 2, in particular Theorem 6). For the sake of simplicity we limit ourselves
in the analysis to the case A = A[0,−1]. All results can be generalized to higher order
tight-binding Hamiltonians A[t0,t1,...,tM ] as well.

Two-grid analysis. In the LFA analysis of our two grid method we first provide a
result for every component of the method, i.e., the operator A itself, the smoother S
and the coarse grid correction. Then we conclude with an estimate of the asymptotic
convergence rate defined by the 2-norm of the two grid error propagator

M = S
(
I − P

(
PTAP

)−1
PTA

)
S.

Definition 10. Let k = k1b1 + k2b2 ∈ DG with k1, k2 ∈ [0, 1
2 ), then the eight-

dimensional space of harmonics is defined by

Hk = {ϕ±
ξ1,ξ2

(k, x) :=

(
ei〈k+ξ1

b1
2 +ξ2

b2
2 ,x〉2

±ei〈k+ξ1
b1
2 +ξ2

b2
2 ,x+τ〉2

)
, x ∈ LT , (ξ1, ξ2) ∈ {0, 1}2}.

11



Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt
–

Pr
ep

ri
nt

–
Pr

ep
ri

nt

Any operator X which is Hk-invariant for all k can then be expressed by a family of
8× 8 Matrices Xk : Hk → Hk, defined by

XVk = XkVk,

where Vk =
(
ϕ+
0,0 ϕ−

0,0 ϕ+
0,1 ϕ−

0,1 ϕ+
1,0 ϕ−

1,0 ϕ+
1,1 ϕ−

1,1

)T is the (ordered) col-
lection of the 8 harmonic functions corresponding to k.

The amplification factor of H at k is defined as ρ(Hk) =
√
λmax(HT

k Hk).

We now show that M is an Hk-invariant operator and give a product formula for
Mk. We start with the analysis of the tight-binding operator A[0,−1] .

Lemma 11. Let k = k1b1 + k2b2 ∈ DG with k1, k2 ∈ [0, 1
2 ) and A = A[0,−1], then

A is Hk-invariant and Ak is a block-diagonal matrix with four blocks Ak̂ ∈ R2×2, k̂ ∈
{k + ξ1

b1
2 + ξ2

b2
2 , (ξ1, ξ2) ∈ {0, 1}

2} with

Ak̂ =

(
0 1 + ei〈k̂,a1〉2 + ei〈k̂,a2〉2

1 + e−i〈k̂,a1〉2 + e−i〈k̂,a2〉2 0

)
.

Proof. See Theorem 6.
Lemma 12. Let k = k1b1 + k2b2 ∈ DG with k1, k2 ∈ [0, 1

2 ), A = A[0,−1], then the
Kaczmarz smoother given by its error propagator

S = −(L+D)−1U

based on the splitting (9) is Hk-invariant and, assuming lexicographic ordering, Sk

is block-diagonal with four blocks Sk̂ ∈ R2×2 corresponding to k̂ ∈ {k + ξ1
b1
2 +

ξ2
b2
2 , (ξ1, ξ2) ∈ {0, 1}2}. Each block Sk̂ fulfills

Sk̂ =

− ei〈k̂,a1〉2+ei〈k̂,a2〉2+ei〈k̂,a1−a2〉2

3+ei〈k̂,−a1〉2+ei〈k̂,−a2〉2+ei〈k̂,−a1+a2〉2
0

0 − ei〈k̂,a1〉2+ei〈k̂,a2〉2+ei〈k̂,a1−a2〉2

3+ei〈k̂,−a1〉2+ei〈k̂,−a2〉2+ei〈k̂,−a1+a2〉2

 .

Proof. This statement is a direct consequence of ATA = A[3,0,1].
Concerning the coarse grid correction we first give an expression for the action of

the restriction and interpolation. We introduce for each k = k1b1 + k2b2 ∈ DG with
k1, k2 ∈ [0, 1

2 ) the space Hc
k by

Hc
k := {ϕ±

c (k, x) :=

(
±ei〈k,x〉2
ei〈k,x+2τ〉2

)
, x ∈ Lc

T }.

Analogously to Vk we define V c
k =

(
ϕ+
c ϕ−

c

)T .
Lemma 13. Let k = k1b1 + k2b2 ∈ DG with k1, k2 ∈ [0, 1

2 ) the restriction operator
PT with interpolation weights ws and w` maps Hk → Hc

k. Thus it can be represented
by Rk ∈ C2×8 such that RVk = V c

kRk. The 2 × 2 blocks of Rk, corresponding to
k̂ = k + (ξ1

b1
2 + ξ2

b2
2 ), (ξ1, ξ2) ∈ {0, 1}2, are given by

(14) R
(ξ1,ξ2)
k =

1

2

(
γξ1,ξ2(3τ) + γξ1,ξ2(τ) γξ1,ξ2(3τ)− γξ1,ξ2(τ)
γξ1,ξ2(3τ)− γξ1,ξ2(τ) γξ1,ξ2(3τ) + γξ1,ξ2(τ)

)
· β

(
0 0 0 0

)
k̂

,

12
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where γξ1,ξ2(µ) = ei〈ξ1
b1
2 +ξ2

b2
2 ,µ〉2 and

β
(
i1 i2 i3 i4

)
k̂

= (−1)i1 · 1

+ (−1)i2 · 2[ws cos (〈k̂, a2〉2) + w` cos (〈k̂, 2a1 − a2〉2)]
+ (−1)i3 · 2[ws cos (〈k̂, a1〉2) + w` cos (〈k̂, a1 − 2a2〉2)]
+ (−1)i4 · 2[ws cos (〈k̂, a1 − a2〉2) + w` cos (〈k̂, a1 + a2〉2)].

(15)

Proof. Let xc = 2j1a1 +2j2a2 + τ ∈ Lc
T , i.e., of type Ac/B, then with β

(
i1 i2 i3 i4

)
k̂

of (15) we find

R

(
ei〈k̂,x〉2

±ei〈k̂,x+τ〉2

)
=


±ei〈k̂,xc〉2(1 + ws ·

∑
xc+xs∈Gxc

2

ei〈k̂,xs〉2 + w` ·
∑

xc+x`∈Gxc
5

ei〈k̂,x`〉2)

ei〈k̂,xc+2τ〉2(1 + ws ·
∑

xc+xs+2τ∈Gxc+2τ
2

ei〈k̂,xs〉2 + w` ·
∑

xc+x`+2τ∈Gxc+2τ
5

ei〈k̂,x`〉2)


=

 ±ei〈k̂,xc〉2β
(
0 0 0 0

)
k̂

ei〈k̂,xc+2τ〉2β
(
0 0 0 0

)
k̂


=

 ±ei〈k,xc〉2ei〈ξ1
b1
2 +ξ2

b2
2 ,2j1a1+2j2a2+τ〉2β

(
0 0 0 0

)
k̂

ei〈k,xc+2τ〉2ei〈ξ1
b1
2 +ξ2

b2
2 ,2j1a1+2j2a2+3τ〉2β

(
0 0 0 0

)
k̂


=

 ±ei〈k,xc〉2γξ1,ξ2(τ)β
(
0 0 0 0

)
k̂

ei〈k,xc+2τ〉2γξ1,ξ2(3τ)β
(
0 0 0 0

)
k̂

 .

Solving the resulting 2× 2 linear systems of equations yields (14).
Lemma 14. Let k = k1b1 + k2b2 ∈ DG with k1, k2 ∈ [0, 1

2 ). The interpolation
operator P with interpolation weights ws and w` maps Hc

k → Hk. Thus it can be
represented by Pk ∈ C8×2 with PV c

k = VkPk. Using again the notation of (15) we
have

Pk =
1

8



2 · β
(
0 0 0 0

)
k 0 · β

(
0 0 0 0

)
k

0 · β
(
0 0 0 0

)
k 2 · β

(
0 0 0 0

)
k

(1− γ0,1(−τ))β
(
1 0 1 0

)
k (1 + γ0,1(−τ))β

(
1 0 1 0

)
k

(1 + γ0,1(−τ))β
(
1 0 1 0

)
k (1− γ0,1(−τ))β

(
1 0 1 0

)
k

(1− γ1,0(−τ))β
(
1 1 0 0

)
k (1 + γ1,0(−τ))β

(
1 1 0 0

)
k

(1 + γ1,0(−τ))β
(
1 1 0 0

)
k (1− γ1,0(−τ))β

(
1 1 0 0

)
k

(1 + γ1,1(−τ))β
(
0 1 1 0

)
k (1− γ1,1(−τ))β

(
0 1 1 0

)
k

(1− γ1,1(−τ))β
(
0 1 1 0

)
k (1 + γ1,1(−τ))β

(
0 1 1 0

)
k


=

1

8



+α+
0,0

−α+
0,0

+α−
0,0

−α−
0,0

+α+
0,1

−α+
0,1

+α−
0,1

−α−
0,1

+α+
1,0

−α+
1,0

+α−
1,0

−α−
1,0

+α+
1,1

−α+
1,1

+α−
1,1

−α−
1,1


.

Proof. In order to determine the 16 coefficients ±ασ
ξ1,ξ2

in

(16)
(
Pϕ±

c

)
(k, x) =

∑
ξ1,ξ2∈{0,1}
σ∈{+,−}

±ασ
ξ1,ξ2ϕ

σ
ξ1,ξ2(k, x), x ∈ LT ,

13



Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t

we first simplify the right-hand side by

ϕσ
ξ1,ξ2(k, x) =

(
ei〈k+ξ1

b1
2 +ξ2

b2
2 ,x〉2

σei〈k+ξ1
b1
2 +ξ2

b2
2 ,x+τ〉2

)

= ei〈ξ1
b1
2 +ξ2

b2
2 ,x〉2

(
ei〈k,x〉2

σγξ1,ξ2(τ)e
i〈k,x+τ〉2

)
, σ ∈ {+,−}.

(17)

For x+ τ ∈ L(ζ1,ζ2)
T , (ζ1, ζ2) ∈ {0, 1}2 we further obtain due to x = 2j1a1 + 2j2a2

ei〈ξ1
b1
2 +ξ2

b2
2 ,x〉2 = (−1)ζ1ξ1+ζ2ξ2 .

Now consider the left hand-side of (16) in terms of the splitting of LT , i.e.,(
Pϕ±

c

)
(k, x), x+ τ ∈ L(ζ1,ζ2)

T , (ζ1, ζ2) ∈ {0, 1}2.

For x + τ ∈ L(0,0)
T we have x ∈ L(1,1)

G according to (11) (i.e., / in Figures 10
and 11). The application of the interpolation rule then yields,(

Pϕ±
c

)
(k, x) =

(
ws

(
ei〈k,x+a1−a2〉2 + ei〈k,x−a1+a2〉2

)
± 1

2e
i〈k,x+τ〉2

)
+

(
w`

(
ei〈k,x+a1+a2〉2 + ei〈k,x−a1−a2〉2

)
± 1

2e
i〈k,x+τ〉2

)
=

(
2 [ws cos(〈k, a1 − a2〉2) + w` cos(〈k, a1 + a2〉2)] ei〈k,x〉2

±ei〈k,x+τ〉2

)
.

(18)

For x+ τ ∈ L(0,1)
T we have x ∈ L(1,0)

G ( / ) and thus,(
Pϕ±

c

)
(k, x) =

(
ws

(
ei〈k,x+a1〉2 + ei〈k,x−a1〉2

)
±ws

(
ei〈k,x+τ+a2〉2 + ei〈k,x+τ−a2〉2

))
+

(
w`

(
ei〈k,x+a1−2a2〉2 + ei〈k,x−a1+2a2〉2

)
±w`

(
ei〈k,x+τ+2a1−a2〉2 + ei〈k,x+τ−2a1+a2〉2

))
=

(
2 [ws cos(〈k, a1〉2) + w` cos(〈k, a1 − 2a2〉2)] ei〈k,x〉2
±2 [ws cos(〈k, a2〉2) + w` cos(〈k, 2a1 − a2〉2)] ei〈k,x+τ〉2

)
.

(19)

Analogously we find for x+ τ ∈ L(0,1)
T and x ∈ L(1,0)

G ( / ),

(20)
(
Pϕ±

c

)
(k, x) =

(
2 [ws cos(〈k, a2〉2) + w` cos(〈k, 2a1 − a2〉2)] ei〈k,x〉2
±2 [ws cos(〈k, a1〉2) + w` cos(〈k, a1 − 2a2〉2)] ei〈k,x+τ〉2

)
.

Finally we obtain for x+ τ ∈ L(1,1)
T and x ∈ L(0,0)

G ( / ) that,

(21)
(
Pϕ±

c

)
(k, x) =

(
ei〈k,x〉2

±2 [ws cos(〈k, a1 − a2〉2) + w` cos(〈k, a1 + a2〉2)] ei〈k,x+τ〉2

)
.

Using the short-hand notation

β
(0,0)
k = 1,

β
(0,1)
k = 2 [ws cos(〈k, a2〉2) + w` cos(〈k, 2a1 − a2〉2)] ,

β
(1,0)
k = 2 [ws cos(〈k, a1〉2) + w` cos(〈k, a1 − 2a2〉2)] ,

β
(1,1)
k = 2 [ws cos(〈k, a1 − a2〉2) + w` cos(〈k, a1 + a2〉2)] ,

14
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Figure 12: Logarithmic plots of the spectra of Ac for different choices of the long
interpolation weight w` and ws = 2w`−1 (from left to right: w` = 0, w` =

1
6 , w` =

1
4 ,

w` =
1
3 and w` =

1
2 ).

we observe that β
(
i1 i2 i3 i4

)
k̂

of (15) can be expressed by

β
(
i1 i2 i3 i4

)
k = (−1)i1β(0,0)

k + (−1)i2β(0,1)
k + (−1)i3β(1,0)

k + (−1)i4β(1,1)
k ,

and obtain the following systems of equations by combining (18)–(21) with (17)(
β
(1−ζ1,1−ζ2)
k

±β(ζ1,ζ2)
k

)
=
∑

ξ1,ξ2∈{0,1}
σ∈{+,−}

±ασ
ξ1,ξ2(−1)

ξ1ζ1+ξ2ζ2

(
1

σγξ1,ξ2(τ)

)
, ζ1, ζ2 ∈ {0, 1}.

Lemma 15. Given an interpolation operator P with interpolation weights ws and
w`, the Galerkin coarse grid operator Ac = PTAP on Lc

G for A = A[0,−1] on LG is
given by

Ac = A[t0,t1,t2,t3,t4]

with t0 = t2 = 0 and

t1 = −6w2
s − 8wsw` − 2w2

` − 4ws − 2w`,

t3 = −4wsw` − 2w2
s − 2w2

` − 2w`,

t4 = −2wsw` − 2w2
` .

Thus it can be represented by Ak,c according to Lemma 11.

Corollary 16. The coarse grid operator Ac = PTAP fulfills

dim(null(Ac)) =


4 w` ∈ ( 16 ,

1
3 ),

6 w` ∈ { 16 ,
1
3},

16 else,

where ws = 2w` − 1.
Proof. Using the result of Lemma 15 we find Ac = A[t1,t2,t3,t4]. Generalizing

Theorem 6 one finds again a 2 × 2 block-diagonalization of Ac and a description of
its spectrum by Ec(k). Using this representation we find2 that for w` ∈ ( 16 ,

1
3 ) the

2Using a computer algebra system

15
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Figure 13: Amplification factors ρ(Mk) of the two grid method for k = k1b1 + k2b2
with (k1, k2) ∈ [0, 1

2 )
2 \ {( 16 ,

1
3 ), (

1
3 ,

1
6 )} and w` =

1
4 (i.e., ws = − 1

2 ).

only doublet of zeros of Ec(k) are located at the Dirac points. For w` ∈ { 16 ,
1
3} an

additional doublet of zeros at k = 0 appears and for w` < 1
6 or w` > 1

3 there exists
an α ∈ (0, 1) such that

Ec(αK1) = 0, Ec(αK2) = 0,

Ec(b1 + α(K1 −K2)) = 0, Ec(b2 − α(K1 −K2)) = 0,

Ec(b1 + b2 − αK1) = 0, Ec(b1 + b2 − αK2) = 0.

In Figure 12 the spectra of Ac on DG for w` ∈ {0, 1
6 ,

1
4 ,

1
3 ,

1
2} are shown which illustrate

all three cases.
Now that all components of the two grid error propagator are analyzed we can for-
mulate the main theorem.

Theorem 17. Let k = k1b1+k2b2 ∈ DG with k1, k2 ∈ [0, 1
2 ) the two grid operator

M maps Hk → Hk. Thus it can be represented by Mk ∈ C8×8 with MVk = VkMk

given by
Mk = Sk

(
I − PkA

†
k,cP

T
k Ak

)
Sk,

where † denotes a suitable pseudo-inverse and Pk is defined by interpolation weights
ws and w`.

Proof. Follows directly from Lemmas 11 to 15.
In Figure 13 the resulting amplification factors for the two grid operator with one
pre- and one post-smoothing iteration are shown using w` = 1

4 (i.e., ws = − 1
2 ).

The resulting largest amplification factor is approximately .55, i.e., the norm of an
arbitrary error is at least almost halved in every iteration of the two grid method.

Based on Theorem 17 we show in Figure 14 the maximal amplification factors,
i.e., convergence estimates, of the two grid method for varying interpolation weights
w`. As already observed in Corollary 16 the existence of additional kernel modes
for w` /∈ ( 16 ,

1
3 ) leads to divergence. A stable plateau with an estimated convergence

rate around .5 can be observed in the range ( 14 ,
1
3 − ε). In contrast to w` → 1

3 the
method diverges already for w` significantly larger than 1

6 . This result proves the
16
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Figure 14: Plot of the estimated convergence rate of the two grid operator M using
the interpolation weights w` and ws = 2w` − 1.

robustness and efficiency of the presented two-grid method to solve the maximally
indefinite system arising in the tight-binding formulation of graphene.

5. Numerical results. In order to illustrate the findings in section 4 we consider
a series of numerical tests. First, we show that asymptotically for n,m, ` → ∞ the
theoretical bound is sharp for the range of interpolation weights, which was declared
sensible. Second, we show that the performance of the method does neither depend
on the aspect ratio of Gn,m,` nor on its chiral angle θ. We show that the recursive
application of the construction yields a scalable multigrid method with convergence
rate close to the two grid rate. Finally, we show results for non-periodic boundary
conditions and discuss the difficulties that arise.

Two grid. We first consider the asymptotic convergence rate of the two grid
method for varying interpolation weights w` ∈ ( 16 ,

1
3 ) and increasing lattice sizes

G2k+1,2k+1,2k+1 with periodic boundary conditions. As can be seen in Figure 15 the
actual convergence rate stays strictly below the theoretical estimate for a wide range
of interpolation weights. Towards the boundaries of ( 16 ,

1
3 ) the behavior becomes

erratic and divergence sets in earlier than predicted in the theory due to numerical
instabilities. As expected the theoretical bound becomes sharper for increasing lattice
sizes.

In a second set of tests we report in Figures 16 and 17 the behaviour of the two
grid method with respect to changing aspect ratios and chiral angles of Gn,m,` by
varying n,m and `. In these tests the number of atoms is kept fixed at around 104.
While the change in chiral angle at fixed aspect ratio has no influence on the two grid
convergence (cf. Figure 17), the aspect ratio affects the asymptotic convergence rate
(cf. Figure 16). This directly follows from Lemma 8, i.e., the change of the discrete
spectrum Λn,m,` with respect to n,m and `.

Multigrid. Even though the developed theory only covers the two grid method,
its construction is recursively applicable as the coarse grid operator is again formu-
lated on a hexagonal lattice. In Figure 18 we report results of a multigrid V -cycle
on G2k+1,2k+1,2k+1 for varying interpolation weights w` ∈ ( 16 ,

1
3 ) using k levels in the

multigrid hierarchy. The result shows that the theoretical two grid convergence esti-
mate is not a sharp bound but still a good estimate for the k level multigrid V -cycle.
The stagnation of the convergence rates for k = 7 and k = 9 indicate that the ap-
proach should scale well with increasing problem size and, concurrently, number of

17
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Figure 15: Theoretical bound of the convergence rate along with asymptotic conver-
gence rates of the two grid method using the interpolation weights w` and ws = 2w`−1
on lattices G2k+1,2k+1,2k+1 ( theor. bound, k = 2, k = 5 and k = 7).
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−
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x
‖ 2

Figure 16: 16384 unknowns, aspect ratio α = ‖C‖2

‖T‖2
/
√
3: ( theor. bound,

α = 1
16 , α = 1 and α = 16), Two-grid convergence using the interpolation

weights w` =
1
4 and ws = − 1

2 .

coarse grids.
Boundary conditions. Last, we consider graphene samples with open boundary

conditions. As has been observed experimentally and shown analytically in [10] the
presence of open boundary conditions along a zig-zag edge leads to localized eigen-
modes along that edge which correspond to small eigenvalues. As can be seen in
Figure 19 the presence of these eigenmodes stalls the convergence of our multigrid
method. On the other hand, open boundary conditions along armchair boundaries do
not hamper the scalability and convergence of the multigrid method. Note that al-
ready a single open zig-zag node, as present in the rotated samples, leads to localized
eigenmodes. How to effectively treat these modes in the multigrid method remains
an open question.

6. Conclusions. In this paper we have shown how to construct a scalable multi-
grid method with optimal complexity for the maximally indefinite system of equations
arising in the tight-binding formulation of graphene. In addition we presented a rig-
orous convergence analysis of the two-grid scheme using LFA. The proven robustness
with respect to size and shape of the graphene samples and the rapid convergence of
the two-grid method transfers well to the multigrid method.

The efficient treatment of the local eigenmodes induced by open boundary condi-
18
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Figure 17: approx. 9k unknowns each, roughly the same aspect ratio ‖C‖2

‖T‖2
·
√
3 ≈ .4,

chiral angle θ ( theor. bound, θ ≈ 0◦, θ ≈ 7◦ and θ ≈ 21◦),
Two-grid convergence using the interpolation weights w` =

1
4 and ws = − 1
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Figure 18: k-level Multigrid convergence. Lattice size G2k+1,2k+1,2k+1 (
theor. bound, k = 2, k = 5, k = 7 and k = 9)

tions along zig-zag edges in the multigrid method remains an open question. We are
currently in the process to incorporate our solver into the Monte-Carlo simulations
for electronic-structure calculations described in [9, 22].
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Figure 19: Convergence of the multigrid method (w` = 1
4 and ws = − 1

2 , 5 level
V -cycle) on G64,64,64 using different combinations of boundary conditions. In here
(xC ,xT ) denotes the armchair b.c., xC , and the zig-zag b.c., xT , where p marks a
periodic and o an open condition. theor. bound, (o, o), (o, p),
(p, o) and (p, p).
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